Linear Algebra - Comprehensive Exam. Summer 2011

Instructions

- Complete 8 out of 10 problems.
- Begin each solution on a new page and use additional paper, if necessary.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notations used
$-\mathbb{R}$ field of real numbers
- \mathbb{C} field of complex numbers
$-\operatorname{dim}(\mathbb{V})$ dimension of a vector Space
- \mathbb{F} either \mathbb{C} or \mathbb{R}.
- \mathbb{F}^{n} set of n-tuples $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{F}$
$-\mathcal{L}(\mathbb{V})$ set of linear operators $T: \mathbb{V} \longmapsto \mathbb{V}$
$-\mathcal{L}(\mathbb{V}, \mathbb{W})$ set of linear transformations $T: \mathbb{V} \longmapsto \mathbb{W}$
- $\mathcal{M}(m, n, \mathbb{F})$ vector space of $m \times n$ matrices with entries from \mathbb{F}.
- $\mathbb{P}(\mathbb{F})$ set of polynomials over \mathbb{F}
$-\mathbb{P}_{m}(\mathbb{F})$ set of polynomials of degree at most m over \mathbb{F}
$-\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$ span of a list of vectors
- $\mathbb{V} \oplus \mathbb{W}$ direct sum of \mathbb{V} and \mathbb{W}
- $\mathbb{V}(\mathbb{F})$ vector space over \mathbb{F}
- $A_{i j}(i, j)^{t h}$ element of matrix A
- \emptyset null set
- We reserve the right to deduct points for matters of unclear or disproportionally cumbersome presentation.

1. Consider a linear transformation $T \in \mathcal{L}(\mathcal{M}(2,2, \mathbb{R}), \mathbb{R})$ given by

$$
T(A)=\sum_{i=1}^{2} A_{i i}, \quad A \in \mathcal{M}(2,2, \mathbb{R})
$$

(a) Find the matrix of transformation T with respect to standard bases
(b) Find a basis and the dimension of null space of T

Note that the standard basis for $\mathcal{M}(2,2, \mathbb{R})$ is
$\beta=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \quad\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \quad\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], \quad\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$
2. Consider the following subsets of \mathbb{R}^{3}
$\mathbb{W}_{1}=\left\{x \in \mathbb{R}^{3} \mid x=\left(0, x_{2}, x_{3}\right)\right\}, \mathbb{W}_{2}=\left\{x \in \mathbb{R}^{3} \mid x=\left(x_{1}, 0, x_{3}\right)\right\}, \mathbb{W}_{3}=\left\{x \in \mathbb{R}^{3} \mid x=\right.$ $\left.\left(x_{1}, x_{2}, 0\right)\right\}$
(a) Prove whether each of the following sets are subspaces of \mathbb{R}^{3}.
i. \mathbb{W}_{1}
ii. $\mathbb{W}_{1} \cap \mathbb{W}_{2}$
iii. $\mathbb{W}_{1} \cup \mathbb{W}_{2}$
iv. $\mathbb{W}_{1} \cap \mathbb{W}_{2} \cap \mathbb{W}_{3}$
(b) Show that $\mathbb{R}^{3}=\mathbb{W}_{12} \oplus \mathbb{W}_{23} \oplus \mathbb{W}_{31}$, where $\mathbb{W}_{i j}=\mathbb{W}_{i} \cap \mathbb{W}_{j}$
3. $A=\left[\begin{array}{lll}7 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 6 & 2\end{array}\right]$
(a) Determine the eigenvalues of A and a basis for each eigenspace.
(b) Find an invertible matrix R such that $R^{-1} A R$ is a diagonal matrix
(c) Use the eigenstructure of A to determine the vector $A^{53}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
4. (a) Let $t \in \mathbb{R}$ such that t is not an integer multiple of π. For the matrix $A=$ $\left[\begin{array}{rr}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$ prove there does not exist a real valued matrix B such that $B A B^{-1}$ is a diagonal matrix.
(b) Do the same for matrix $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ where $a \in \mathbb{R} \backslash\{0\}$
5. Let \mathbb{W}_{1} and \mathbb{W}_{2} be subspaces of vector space \mathbb{V} such that $\mathbb{V}=\mathbb{W}_{1} \oplus \mathbb{W}_{2}$. If β_{1} and β_{2} are bases for \mathbb{W}_{1} and \mathbb{W}_{2}, respectively, show that $\beta_{1} \cap \beta_{2}=\emptyset$ and $\beta_{1} \cup \beta_{2}$ is a base for \mathbb{V}
6. Prove the following theorem. Let $\mathbb{U}_{1}, \ldots, \mathbb{U}_{n}$ be subspaces of \mathbb{V}. Then $\mathbb{V}=\mathbb{U}_{1} \oplus \cdots \oplus$ \mathbb{U}_{n} if and only if both of the following are true:
(a) $\mathbb{V}=\mathbb{U}_{1}+\cdots+\mathbb{U}_{n}$
(b) The only way to write 0 as a sum $u_{1}+\cdots+u_{n}$, with each $u_{j} \in \mathbb{U}_{j}$, is if $u_{j}=0$ for all the j.
7. Suppose $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of \mathbb{V}. Prove that function $T: \mathbb{V} \rightarrow \mathcal{M}(n, 1, \mathbb{F})$ defined by

$$
T v=M(v)
$$

is linear and invertible.
Note: $M(v)$ is the matrix of $v \in \mathbb{V}$ with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$.
8. Prove or give a counterexample: If \mathbb{U} is a subspace of \mathbb{V} that is invariant under every linear operator on \mathbb{V}, then $\mathbb{U}=\{0\}$ or $\mathbb{U}=\mathbb{V}$.
9. Let \mathbb{V} and \mathbb{W} be vector spaces and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Suppose \mathbb{V} is finite dimensional. Show that

$$
\operatorname{dim}(\mathbb{V})=\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{null}(T))
$$

10 . Let \mathbb{V} be a finite dimensional vector space, and let \mathbb{U} be a subspace of \mathbb{V}. Prove that there is a subspace \mathbb{W} of \mathbb{V} such that $\mathbb{V}=\mathbb{U} \oplus \mathbb{W}$.

