Instructions

- Complete 8 out of 10 problems.
- Begin each solution on a new page and use additional paper, if necessary.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notations used
 - \mathbb{R} field of real numbers
 - $\ \mathbb{C}$ field of complex numbers
 - $dim(\mathbb{V})$ dimension of a vector Space
 - \mathbb{F} either \mathbb{C} or \mathbb{R} .
 - \mathbb{F}^n set of n-tuples $(x_1, \ldots, x_n), x_i \in \mathbb{F}$
 - $-\mathcal{L}(\mathbb{V})$ set of linear operators $T: \mathbb{V} \longmapsto \mathbb{V}$
 - $-\mathcal{L}(\mathbb{V},\mathbb{W})$ set of linear transformations $T:\mathbb{V}\longmapsto\mathbb{W}$
 - $-\mathcal{M}(m,n,\mathbb{F})$ vector space of $m \times n$ matrices with entries from \mathbb{F} .
 - $\mathbb{P}(\mathbb{F})$ set of polynomials over \mathbb{F}
 - $-\mathbb{P}_m(\mathbb{F})$ set of polynomials of degree at most m over \mathbb{F}
 - $span(v_1, \ldots, v_n)$ span of a list of vectors
 - $\mathbb{V} \oplus \mathbb{W}$ direct sum of \mathbb{V} and \mathbb{W}
 - $\mathbb{V}(\mathbb{F})$ vector space over \mathbb{F}
 - $-A_{ij} (i, j)^{th}$ element of matrix A
 - Ø null set
- We reserve the right to deduct points for matters of unclear or disproportionally cumbersome presentation.

1. Consider a linear transformation $T \in \mathcal{L}(\mathcal{M}(2,2,\mathbb{R}),\mathbb{R})$ given by

$$T(A) = \sum_{i=1}^{2} A_{ii}, \quad A \in \mathcal{M}(2, 2, \mathbb{R})$$

- (a) Find the matrix of transformation T with respect to standard bases
- (b) Find a basis and the dimension of null space of T

Note that the standard basis for $\mathcal{M}(2,2,\mathbb{R})$ is $(\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix})$

$$\beta = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

2. Consider the following subsets of \mathbb{R}^3

 $\mathbb{W}_1 = \{x \in \mathbb{R}^3 | x = (0, x_2, x_3)\}, \ \mathbb{W}_2 = \{x \in \mathbb{R}^3 | x = (x_1, 0, x_3)\}, \ \mathbb{W}_3 = \{x \in \mathbb{R}^3 | x = (x_1, x_2, 0)\}$

- (a) Prove whether each of the following sets are subspaces of \mathbb{R}^3 .
- i. W₁
 ii. W₁ ∩ W₂
 iii. W₁ ∪ W₂
 iv. W₁ ∩ W₂ ∩ W₃
 (b) Show that ℝ³ = W₁₂ ⊕ W₂₃ ⊕ W₃₁, where W_{ij} = W_i ∩ W_j

$$3. \ A = \left[\begin{array}{rrrr} 7 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 6 & 2 \end{array} \right]$$

- (a) Determine the eigenvalues of A and a basis for each eigenspace.
- (b) Find an invertible matrix R such that $R^{-1}AR$ is a diagonal matrix
- (c) Use the eigenstructure of A to determine the vector

$$A^{53} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

4. (a) Let $t \in \mathbb{R}$ such that t is not an integer multiple of π . For the matrix $A = \begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{bmatrix}$ prove there does not exist a **real** valued matrix B such that BAB^{-1} is a diagonal matrix.

(b) Do the same for matrix $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ where $a \in \mathbb{R} \setminus \{0\}$

- 5. Let \mathbb{W}_1 and \mathbb{W}_2 be subspaces of vector space \mathbb{V} such that $\mathbb{V} = \mathbb{W}_1 \oplus \mathbb{W}_2$. If β_1 and β_2 are bases for \mathbb{W}_1 and \mathbb{W}_2 , respectively, show that $\beta_1 \cap \beta_2 = \emptyset$ and $\beta_1 \cup \beta_2$ is a base for \mathbb{V}
- 6. Prove the following theorem. Let $\mathbb{U}_1, \ldots, \mathbb{U}_n$ be subspaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U}_1 \oplus \cdots \oplus \mathbb{U}_n$ if and only if both of the following are true:
 - (a) $\mathbb{V} = \mathbb{U}_1 + \dots + \mathbb{U}_n$
 - (b) The only way to write 0 as a sum $u_1 + \cdots + u_n$, with each $u_j \in \mathbb{U}_j$, is if $u_j = 0$ for all the j.
- 7. Suppose $(v_1, ..., v_n)$ is a basis of \mathbb{V} . Prove that function $T : \mathbb{V} \to \mathcal{M}(n, 1, \mathbb{F})$ defined by

$$Tv = M(v)$$

is linear and invertible.

Note: M(v) is the matrix of $v \in \mathbb{V}$ with respect to the basis $(v_1, ..., v_n)$.

8. Prove or give a counterexample: If \mathbb{U} is a subspace of \mathbb{V} that is invariant under every linear operator on \mathbb{V} , then $\mathbb{U} = \{0\}$ or $\mathbb{U} = \mathbb{V}$.

9. Let \mathbb{V} and \mathbb{W} be vector spaces and $T \in \mathcal{L}(\mathbb{V}, \mathbb{W})$. Suppose \mathbb{V} is finite dimensional. Show that

 $dim(\mathbb{V}) = dim(range(T)) + dim(null(T))$

10. Let \mathbb{V} be a finite dimensional vector space, and let \mathbb{U} be a subspace of \mathbb{V} . Prove that there is a subspace \mathbb{W} of \mathbb{V} such that $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$.