Linear Algebra - Comprehensive Exam. Spring 2012

Instructions

- Complete 8 out of 10 problems.
- Begin each solution on a new page and use additional paper, if necessary.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- Calculators are only permitted for basic arithmetics and computation of *rref*
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notations used
 - \mathbb{R} field of real numbers
 - $\mathbb C$ field of complex numbers
 - $dim(\mathbb{V})$ dimension of a vector Space
 - \mathbb{F} either \mathbb{C} or \mathbb{R} .
 - \mathbb{F}^n set of n-tuples $(x_1, \ldots, x_n), x_i \in \mathbb{F}$
 - $-\mathcal{L}(\mathbb{V})$ set of linear operators $T: \mathbb{V} \longrightarrow \mathbb{V}$
 - $-\mathcal{L}(\mathbb{V},\mathbb{W})$ set of linear transformations $T:\mathbb{V}\longmapsto\mathbb{W}$
 - $-\mathcal{M}(m,n,\mathbb{F})$ vector space of $m \times n$ matrices with entries from \mathbb{F} .
 - $\mathbb{P}(\mathbb{F})$ set of polynomials over \mathbb{F}
 - $-\mathbb{P}_m(\mathbb{F})$ set of polynomials of degree at most m over \mathbb{F}
 - $span(v_1, \ldots, v_n)$ span of a list of vectors
 - $\mathbb{V} \oplus \mathbb{W}$ direct sum of \mathbb{V} and \mathbb{W}
 - $\mathbb{V}(\mathbb{F})$ vector space over \mathbb{F}
 - $-A_{ij}$ $(i,j)^{th}$ element of matrix A
 - Ø null set
- We reserve the right to deduct points for matters of unclear or cumbersome presentation.

- 1. Let $S = \{x_1, x_2, ..., x_n\} \in \mathbb{R}$. Let $W = \{p \in \mathbb{P}(\mathbb{R}) \mid p(x_i) = 0 \text{ for all } 1 \leq i \leq n\}$ be the set of those polynomials with real coefficients which are 0 at every point in S. Is W a subspace of $\mathbb{P}(\mathbb{R})$? If so prove it, if not, explain why not.
- 2. Suppose that \mathbb{V} and \mathbb{W} are both finite dimensional subspaces. Prove that there exists a surjective linear map from \mathbb{V} onto \mathbb{W} iff $dim(\mathbb{W}) \leq dim(\mathbb{V})$
- 3. Prove or give a counterexample: If \mathbb{U} is a subspace of \mathbb{V} that is invariant under every linear operator on \mathbb{V} , then $\mathbb{U} = \{0\}$ or $\mathbb{U} = \mathbb{V}$.
- 4. Suppose $T \in \mathcal{L}(\mathbb{V})$ is such that every vector in \mathbb{V} is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.
- 5. Prove that if $p, q \in \mathbb{P}(\mathbb{F})$, with $p \neq 0$, then there exist unique polynomials $s, r \in \mathbb{P}(\mathbb{F})$ such that

$$q = sp + r$$

and deg r < deg p.

- 6. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation with the property that $T \circ T \circ T = 0$. We will refer $T \circ T \circ T$ as T^3 in the rest of the problem.
 - (a) Suppose that $x \in \mathbb{R}^3$ is such that $T^2(x) = T(T(x)) \neq 0$. If $z = cT^2(x)$, then find T(z). If $y = c_1T(x) + c_2T^2(x)$ find $T^2(y)$.
 - (b) If $b_1 = x$, $b_2 = T(x)$ and $b_3 = T^2(x)$. Show that b_1 is not a linear combination of b_2 and b_3 .
- 7. Suppose $A \in \mathcal{M}(m, n, \mathbb{R})$ and $B \in \mathcal{M}(n, s, \mathbb{R})$ and both matrices have full column rank (columns are linearly independent). Suppose furthermore that the range of AB is equal to the range of A. What relations (e.g. $\langle , \rangle, \leq , \geq , =$) must hold between the integers m, n and s? Explain the reasoning and then give an example that illustrate your conclusion.
- 8. Consider the linear transformation T(f) = 3f'' 2f' from \mathbb{P}_2 to \mathbb{P}_2 and let $\beta = (1, t, t^2)$ be a basis for \mathbb{P}_2 .
 - (a) Find the β -matrix of linear transformation T.
 - (b) Determine whether T is an isomorphism.
 - (c) If T is <u>not</u> an isomorphism, find bases for the kernel and image of transformation T.
- 9. Prove the following theorem. Let \mathbb{V} be a vector space with subspaces \mathbb{U} and \mathbb{W} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff $\mathbb{V} = \mathbb{U} + \mathbb{W}$ and $\mathbb{U} \cap \mathbb{W} = \{0\}$.
- 10. Show that if S_1 and S_2 are arbitrary subsets of a vector space \mathbb{V} , then $span(S_1 \cup S_2) = span(S_1) + span(S_2)$