Linear Algebra - Comprehensive Exam. Spring 2012

Instructions

- Complete 8 out of 10 problems.
- Begin each solution on a new page and use additional paper, if necessary.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- Calculators are only permitted for basic arithmetics and computation of rref
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notations used
$-\mathbb{R}$ field of real numbers
- \mathbb{C} field of complex numbers
$-\operatorname{dim}(\mathbb{V})$ dimension of a vector Space
$-\mathbb{F}$ either \mathbb{C} or \mathbb{R}.
- \mathbb{F}^{n} set of n-tuples $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{F}$
$-\mathcal{L}(\mathbb{V})$ set of linear operators $T: \mathbb{V} \longmapsto \mathbb{V}$
$-\mathcal{L}(\mathbb{V}, \mathbb{W})$ set of linear transformations $T: \mathbb{V} \longmapsto \mathbb{W}$
- $\mathcal{M}(m, n, \mathbb{F})$ vector space of $m \times n$ matrices with entries from \mathbb{F}.
$-\mathbb{P}(\mathbb{F})$ set of polynomials over \mathbb{F}
- $\mathbb{P}_{m}(\mathbb{F})$ set of polynomials of degree at most m over \mathbb{F}
$-\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$ span of a list of vectors
$-\mathbb{V} \oplus \mathbb{W}$ direct sum of \mathbb{V} and \mathbb{W}
- $\mathbb{V}(\mathbb{F})$ vector space over \mathbb{F}
- $A_{i j}(i, j)^{t h}$ element of matrix A
- Ø null set
- We reserve the right to deduct points for matters of unclear or cumbersome presentation.

1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \mathbb{R}$. Let $W=\left\{p \in \mathbb{P}(\mathbb{R}) \mid p\left(x_{i}\right)=0\right.$ for all $\left.1 \leq i \leq n\right\}$ be the set of those polynomials with real coefficients which are 0 at every point in S. Is W a subspace of $\mathbb{P}(\mathbb{R})$? If so prove it, if not, explain why not.
2. Suppose that \mathbb{V} and \mathbb{W} are both finite dimensional subspaces. Prove that there exists a surjective linear map from \mathbb{V} onto \mathbb{W} iff $\operatorname{dim}(\mathbb{W}) \leq \operatorname{dim}(\mathbb{V})$
3. Prove or give a counterexample: If \mathbb{U} is a subspace of \mathbb{V} that is invariant under every linear operator on \mathbb{V}, then $\mathbb{U}=\{0\}$ or $\mathbb{U}=\mathbb{V}$.
4. Suppose $T \in \mathcal{L}(\mathbb{V})$ is such that every vector in \mathbb{V} is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.
5. Prove that if $p, q \in \mathbb{P}(\mathbb{F})$, with $p \neq 0$, then there exist unique polynomials $s, r \in \mathbb{P}(\mathbb{F})$ such that

$$
q=s p+r
$$

and $\operatorname{deg} r<\operatorname{deg} p$.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation with the property that $T \circ T \circ T=0$. We will refer $T \circ T \circ T$ as T^{3} in the rest of the problem.
(a) Suppose that $x \in \mathbb{R}^{3}$ is such that $T^{2}(x)=T(T(x)) \neq 0$. If $z=c T^{2}(x)$, then find $T(z)$. If $y=c_{1} T(x)+c_{2} T^{2}(x)$ find $T^{2}(y)$.
(b) If $b_{1}=x, b_{2}=T(x)$ and $b_{3}=T^{2}(x)$. Show that b_{1} is not a linear combination of b_{2} and b_{3}.
7. Suppose $A \in \mathcal{M}(m, n, \mathbb{R})$ and $B \in \mathcal{M}(n, s, \mathbb{R})$ and both matrices have full column rank (columns are linearly independent). Suppose furthermore that the range of $A B$ is equal to the range of A. What relations (e.g. $<,>, \leq, \geq,=$) must hold between the integers m, n and s ? Explain the reasoning and then give an example that illustrate your conclusion.
8. Consider the linear transformation $T(f)=3 f^{\prime \prime}-2 f^{\prime}$ from \mathbb{P}_{2} to \mathbb{P}_{2} and let $\beta=\left(1, t, t^{2}\right)$ be a basis for \mathbb{P}_{2}.
(a) Find the β-matrix of linear transformation T.
(b) Determine whether T is an isomorphism.
(c) If T is not an isomorphism, find bases for the kernel and image of transformation T.
9. Prove the following theorem. Let \mathbb{V} be a vector space with subspaces \mathbb{U} and \mathbb{W}. Then $\mathbb{V}=\mathbb{U} \oplus \mathbb{W}$ iff $\mathbb{V}=\mathbb{U}+\mathbb{W}$ and $\mathbb{U} \cap \mathbb{W}=\{0\}$.
10. Show that if S_{1} and S_{2} are arbitrary subsets of a vector space \mathbb{V}, then $\operatorname{span}\left(S_{1} \cup S_{2}\right)=$ $\operatorname{span}\left(S_{1}\right)+\operatorname{span}\left(S_{2}\right)$

