Instructions

- Answer all questions.
- Begin each solution on a new page and use additional paper, if necessary.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- Calculators are not allowed.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notations used
- \mathbb{R} field of real numbers
- \mathbb{C} field of complex numbers
$-\operatorname{dim}(\mathbb{V})$ dimension of a vector Space
- \mathbb{F} either \mathbb{C} or \mathbb{R}.
- \mathbb{F}^{n} set of n-tuples $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{F}$
$-\mathcal{L}(\mathbb{V})$ set of linear operators $T: \mathbb{V} \longmapsto \mathbb{V}$
$-\mathcal{L}(\mathbb{V}, \mathbb{W})$ set of linear transformations $T: \mathbb{V} \longmapsto \mathbb{W}$
- $\mathcal{M}(m, n, \mathbb{F})$ vector space of $m \times n$ matrices with entries from \mathbb{F}.
- $\mathbb{P}(\mathbb{F})$ set of polynomials over \mathbb{F}
- $\mathbb{P}_{m}(\mathbb{F})$ set of polynomials of degree at most m over \mathbb{F}
$-\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$ span of a list of vectors
- $\mathbb{V} \oplus \mathbb{W}$ direct sum of \mathbb{V} and \mathbb{W}
- $\mathbb{V}(\mathbb{F})$ vector space over \mathbb{F}
- $A_{i j}(i, j)^{t h}$ element of matrix A
- \emptyset null set
- $I_{\mathbb{V}}$ Identity transformation on \mathbb{V}.
$-\langle u, v\rangle$ Inner product of vector u and v.
- We reserve the right to deduct points for matters of unclear or disproportionally cumbersome presentation.

1. Let $\mathbb{U}_{1}, \mathbb{U}_{2}, \ldots, \mathbb{U}_{k}$ be subspaces of a vector space \mathbb{V}. Set $\mathbb{W}_{1}=\mathbb{U}_{2}+\mathbb{U}_{3}+\cdots+\mathbb{U}_{k}$. For $1<i<k$, set $\mathbb{W}_{i}=\mathbb{U}_{1}+\cdots+\mathbb{U}_{i-1}+\mathbb{U}_{i+1}+\cdots+\mathbb{U}_{k}$ and $\mathbb{W}_{k}=\mathbb{U}_{1}+\mathbb{U}_{2}+\cdots+\mathbb{U}_{k-1}$. Prove that $\mathbb{V}=\mathbb{U}_{1} \oplus \mathbb{U}_{2} \oplus \cdots \oplus \mathbb{U}_{k}$ if and only if following two conditions holds;
(a) $\mathbb{V}=\mathbb{U}_{1}+\mathbb{U}_{2}+\cdots+\mathbb{U}_{k}$ and
(b) $\mathbb{U}_{i} \cap \mathbb{W}_{i}=\{0\}$ for each i.
2. Prove that if \mathbb{W}_{1} and \mathbb{W}_{2} are finite dimensional subspaces of vector space \mathbb{V}, then the subspace $\mathbb{W}_{1}+\mathbb{W}_{2}$ is finite dimensional, and

$$
\operatorname{dim}\left(\mathbb{W}_{1}+\mathbb{W}_{2}\right)=\operatorname{dim}\left(\mathbb{W}_{1}\right)+\operatorname{dim}\left(\mathbb{W}_{2}\right)-\operatorname{dim}\left(\mathbb{W}_{1} \cap \mathbb{W}_{2}\right)
$$

Hint: Start with a basis $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ for $\mathbb{W}_{1} \cap \mathbb{W}_{2}$
3. Let \mathbb{V}, \mathbb{W} be finite dimensional vector spaces. Prove that they are isomorphic if and only if \mathbb{V} and \mathbb{W} have the same dimension.
4. Suppose $p \in \mathbb{P}(\mathbb{C})$ has degree m. Prove that p has m distinct roots if and only if p and its derivative p^{\prime} have no roots in common.
5. Define a linear operator $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ by $T(p(x))=p^{\prime \prime}(x)-p^{\prime}(x)+p(x)$.
(a) Find the matrix of T relative to the standard basis $\left\{1, x, x^{2}\right\}$
(b) Find all eigenvalues of T and the corresponding eigenvectors.
(c) Is T diagonalizable? Justify your answer.
6. Let \mathbb{V} be a finite dimensional vector space. Suppose that $T \in \mathcal{L}(\mathbb{V})$ has $\operatorname{dim}(V)$ distinct eigenvalues and that $S \in \mathcal{L}(\mathbb{V})$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that $S T=T S$.

