Instructions

- Answer all questions.
- Begin each solution on a new page and use additional paper, if necessary.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- Calculators are not allowed.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Notations used
 - \mathbb{R} field of real numbers
 - $-\mathbb{C}$ field of complex numbers
 - $dim(\mathbb{V})$ dimension of a vector Space
 - \mathbb{F} either \mathbb{C} or \mathbb{R} .
 - \mathbb{F}^n set of n-tuples $(x_1, \ldots, x_n), x_i \in \mathbb{F}$
 - $-\mathcal{L}(\mathbb{V})$ set of linear operators $T:\mathbb{V}\longmapsto\mathbb{V}$
 - $-\mathcal{L}(\mathbb{V},\mathbb{W})$ set of linear transformations $T:\mathbb{V}\longmapsto\mathbb{W}$
 - $-\mathcal{M}(m,n,\mathbb{F})$ vector space of $m \times n$ matrices with entries from \mathbb{F} .
 - $\mathbb{P}(\mathbb{F})$ set of polynomials over \mathbb{F}
 - $-\mathbb{P}_m(\mathbb{F})$ set of polynomials of degree at most m over \mathbb{F}
 - $span(v_1, \ldots, v_n)$ span of a list of vectors
 - $\mathbb{V} \oplus \mathbb{W}$ direct sum of \mathbb{V} and \mathbb{W}
 - $\mathbb{V}(\mathbb{F})$ vector space over \mathbb{F}
 - $-A_{ij}$ $(i,j)^{th}$ element of matrix A
 - Ø null set
 - $I_{\mathbb{V}}$ Identity transformation on \mathbb{V} .
 - $\langle u, v \rangle$ Inner product of vector u and v.
- We reserve the right to deduct points for matters of unclear or disproportionally cumbersome presentation.

- 1. Let $\mathbb{U}_1, \mathbb{U}_2, \ldots, \mathbb{U}_k$ be subspaces of a vector space \mathbb{V} . Set $\mathbb{W}_1 = \mathbb{U}_2 + \mathbb{U}_3 + \cdots + \mathbb{U}_k$. For 1 < i < k, set $\mathbb{W}_i = \mathbb{U}_1 + \cdots + \mathbb{U}_{i-1} + \mathbb{U}_{i+1} + \cdots + \mathbb{U}_k$ and $\mathbb{W}_k = \mathbb{U}_1 + \mathbb{U}_2 + \cdots + \mathbb{U}_{k-1}$. Prove that $\mathbb{V} = \mathbb{U}_1 \oplus \mathbb{U}_2 \oplus \cdots \oplus \mathbb{U}_k$ if and only if following two conditions holds;
 - (a) $\mathbb{V} = \mathbb{U}_1 + \mathbb{U}_2 + \cdots + \mathbb{U}_k$ and
 - (b) $\mathbb{U}_i \cap \mathbb{W}_i = \{0\}$ for each *i*.
- 2. Prove that if \mathbb{W}_1 and \mathbb{W}_2 are finite dimensional subspaces of vector space \mathbb{V} , then the subspace $\mathbb{W}_1 + \mathbb{W}_2$ is finite dimensional, and

 $dim(\mathbb{W}_1 + \mathbb{W}_2) = dim(\mathbb{W}_1) + dim(\mathbb{W}_2) - dim(\mathbb{W}_1 \cap \mathbb{W}_2).$

<u>Hint:</u> Start with a basis $(u_1, u_2, ..., u_k)$ for $\mathbb{W}_1 \cap \mathbb{W}_2$

- 3. Let V, W be finite dimensional vector spaces. Prove that they are isomorphic if and only if V and W have the same dimension.
- 4. Suppose $p \in \mathbb{P}(\mathbb{C})$ has degree *m*. Prove that *p* has *m* distinct roots if and only if *p* and its derivative p' have no roots in common.
- 5. Define a linear operator $T : \mathbb{P}_2 \to \mathbb{P}_2$ by T(p(x)) = p''(x) p'(x) + p(x).
 - (a) Find the matrix of T relative to the standard basis $\{1, x, x^2\}$
 - (b) Find all eigenvalues of T and the corresponding eigenvectors.
 - (c) Is T diagonalizable? Justify your answer.
- 6. Let \mathbb{V} be a finite dimensional vector space. Suppose that $T \in \mathcal{L}(\mathbb{V})$ has dim(V) distinct eigenvalues and that $S \in \mathcal{L}(\mathbb{V})$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.