Comprehensive Exam - Differential Equations Spring 2015

- Choose any six from the eight questions.
- Cross out the entire page of the problem that you don't want to be graded.
- Provide the answer/solutions/proof in the method and the format the question requires.
- Write down the answers legibly. Graph the figures as per the instructions.
- Unrecognizable steps/works will not be considered for grading.
- Simplify to the best possible. Showing the work is necessary and important. No work means no points.
- Nothing is "clear", "obvious" or "trivial" unless it's a definition or given as an assumption.
- If you are using a theorem (or theorems) to justify your arguments, state the theorem(s) in its entirety.
- Any type of calculator or computing device is not allowed.

For Instructor's Use Only:

Questions	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total Score
Points									

1. A. [6 points] State the Picard's existence and uniqueness theorem and prove its uniqueness part.
B. [4 points] Consider the following IVP:

$$
y^{\prime}(x)=\frac{\sqrt{x+y}}{x-y}, y(0)=1 \text { for } x \in\left(-\frac{1}{3}, \frac{1}{3}\right) \text {. }
$$

Does it have a unique solution on the open square $\left(-\frac{1}{3}, \frac{1}{3}\right) \times\left(\frac{2}{3}, \frac{4}{3}\right)$? Justify your answer.
2. Solve the IVP $\boldsymbol{X}^{\prime}=\boldsymbol{A}(\boldsymbol{t}) \boldsymbol{X}+\boldsymbol{g}(\boldsymbol{t})$ where $A(t)=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right)$ and $g(t)=\binom{0}{\cos t}$.
3. Consider the system $\boldsymbol{X}^{\prime}(t)=\boldsymbol{A} \boldsymbol{X}(t)$, where $A=\left(\begin{array}{cc}0 & -5 \\ 1 & \alpha\end{array}\right)$.
A. [3 points] Determine the eigenvalues of A in terms of α
B. [4 points] Determine the type and stability of the equilibrium point $(0,0)$ for all $\alpha \in \mathbb{R}$.
C. [3 points] Draw the phase plane (or phase portrait) for the corresponding α.
4. Prove that every solution of $x^{\prime \prime}+x^{5}=0$ is periodic.
5. Consider the system

$$
\binom{x}{y}^{\prime}=\binom{y+x\left(x^{2}+y^{2}\right) \sin \left(\frac{\pi}{\sqrt{x^{2}+y^{2}}}\right)}{-x+y\left(x^{2}+y^{2}\right) \sin \left(\frac{\pi}{\sqrt{x^{2}+y^{2}}}\right)}
$$

a. Find the equilibrium points.
b. Using the polar coordinates, graph its Phase Plane.
c. Determine, whether this has a limit cycle or not, if it does then discuss the (orbital) stability.
6. Graph the phase plane of $x^{\prime \prime}-e^{-x}=0$ using the "geometric method".
7. Find the series solution of $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ centered about the origin.
8. Find all the positive eigenvalue(s), and the corresponding eigenfunction(s) for the BVP:

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 \\
y(0)=0=y^{\prime}(L)
\end{gathered}
$$

Can $\lambda=0$ be an eigenvalue? If so, find the corresponding eigenfunction; otherwise justify why not.

