Instructions:

1. No references are permitted during the exam.

2. Solutions must be written legibly and neatly on separate sheet(s) of paper with your name and problem number at the top of each page.
3. Be sure to provide complete and clear reasons for all of your steps (e.g. no statement is "clear" or "obvious" unless it's a definition or given as an assumption, and do not only name a theorem, also show that its hypotheses are satisfied).
4. All problems are equally weighted. You have three (3) hours to submit your solutions.
5. Two gamblers (say A and B) bet $\$ 1$ each on the successive tosses of a fair coin. For each toss, A wins if the outcome is a head and B wins otherwise.
(a) What is the probability that, after six tosses, A has won $\$ 2$ from B ?
(b) If each gambler has a bank of $\$ 6$, what is the probability that A wins all the money from B on the tenth toss?
6. Let X and Y be two random variables with the joint probability density function given by

$$
f(x, y)=\frac{2}{5}(x+4 y), 0<x<1,0<y<1 .
$$

(a) Derive the marginal distribution of X and the marginal distribution of Y.
(b) Find $P(X>0.3)$.
(c) Find $E(Y)$.
3. Let X be the number of tosses of a fair die until a ' 6 ' appears.
(a) What is the probability distribution of X ? Provide the probability mass function of X.
(b) Derive the moment-generating function of the distribution of X.
(c) Calculate $E(X)$ using the moment-generating function you derived in part (b).
4. Electronic components of a certain type have a length of life X (measured in hours), with density function

$$
f(x)=\frac{1}{100} e^{-x / 100}, x>0
$$

Consider a series system of n such components (operating independently) where the system fails if any one of those components fails.
(a) For $n=2$, find the probability that such system will last longer than 100 hours .
(b) Find the expression of median lifetime of such systems for general n.
5. Let X_{1}, \ldots, X_{n} constitute a random sample of size n from a continuous uniform distribution over $(0, \beta)$, with β unknown. Consider two estimators of β :

$$
\begin{gathered}
\hat{\beta_{1}}=2 \bar{X} \\
\hat{\beta}_{2}=\frac{n+1}{n} Y_{n}
\end{gathered}
$$

where $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Which estimator do you prefer? Explain.
6. Let X_{1}, \ldots, X_{n} constitute a random sample of size n from an exponential population with parameter β. Let θ be the population variance. Find the best unbiased estimator of θ (in terms of $\left.X_{1}, \ldots, X_{n}\right)$.

