Linear Algebra August 2015

Name : Comprehensive Exam

Exam Instructions

- No references are permitted during the exam.
- Solutions must be written legibly and neatly in the space provided for each problem.
- Be sure to provide complete and clear reasons for all of your steps (e.g., no statement is "clear" or "obvious" unless it is a definition or given as an assumption; and do not only name a theorem, but also show that its hypotheses are satisfied).
- If you are asked to prove a known theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Do not interpret a problem in such a way that it becomes trivial.
- All problems are equally weighted.
- You have three (3) hours to submit your solutions to the following six (6) problems.
- Students are encouraged to use a scientific calculator such as TI-83/TI-84/TI-89.

Problem-1

Let $a \in \mathbb{R}, x=\left[\begin{array}{l}a \\ 1 \\ 3 \\ 0\end{array}\right], u=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right]$, and $v=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]$. Let $\mathbb{P}_{u}(x)$ and $\mathbb{P}_{v}(x)$ be the projections of x onto u and v respectively. Find the values of a such that $\mathbb{P}_{u}(x)$ is orthogonal to $\mathbb{P}_{v}(x)$.

Find an orthonormal basis in \mathbb{R}^{3} using the set of basis vectors $\left\{\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.

Problem-3

Let $a \in \mathbb{R}, x=\left[\begin{array}{l}a \\ 0 \\ 1 \\ 0\end{array}\right]$ and $u^{\perp}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]$. Compute the Householder reflection of x about the hyperplane with the orthogonal vector u^{\perp}.

Problem-4

Suppose A is an $n \times n$ square matrix such that $A^{2}=0$. Prove that $\sigma(A)=\{0\}$.

Problem-5

Suppose A is an $m \times m$ normal matrix. Prove that the following two statements are equivalent:
(1) A has a singular value decomposition $A=U \Sigma V^{T}$, where $\mathrm{U}=\mathrm{V}$.
(2) A is symmetric and positive semi-definite.

Problem-6

Compute $\ln (A)$ if $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$

