Syllabus for Comprehensive Analysis Exam

- 1. Definitions (in a metric space unless otherwise stated)
 - (a) supremum/infimum of a set $A \subseteq \mathbb{R}$
 - (b) metric d on a set X, metric space
 - (c) discrete metric space
 - (d) ϵ (open) ball centered at x_0
 - (e) closed ball centered at x_0 of radius r
 - (f) sphere centered at x_0 of radius ϵ
 - (g) open set, closed set, closure
 - (h) diameter of a set, bounded set
 - (i) interior points, limit points, isolated points
 - (j) convergent sequence, limit, divergent sequence, subsequence
 - (k) Cauchy sequence
 - (l) complete metric space
 - (m) dense, nowhere dense
 - (n) compact, sequentially compact, open cover, subcover, totally bounded
 - (o) equicontinuous subset of C(K)
 - (p) continuous function
 - (q) vector space, norm
 - (r) normed vector space
 - (s) metric induced by a norm
 - (t) Banach space
 - (u) subspace, linear combination, span
 - (v) linearly_independent/dependent_set, dimension, (Hamel) basis
 - (w) finite dimensional vector space
 - (x) convergent sequence in a normed vector space
 - (y) Cauchy sequence in a normed vector space
 - (z) equivalent norms

- 2. Examples
 - (a) Metric spaces: R^n , \mathbb{C}^n , ℓ^{∞} , ℓ^p for $p \in [1, \infty)$
 - (b) C[a,b] (with the usual supremum metric and the " L^1 /integral" metric)
 - (c) (X, \tilde{d}) , where \tilde{d} denotes the discrete metric
 - (d) Open balls, limit points, closure of sets in a discrete metric space
 - (e) Non-convergent Cauchy sequence
 - (f) Metrics for which $\mathbb{R}, \mathbb{Q}, C[a, b]$, a subset of \mathbb{R} are complete or not complete
 - (g) Importance of completeness in Baire's Theorem
 - (h) Compact subsets of \mathbb{R} and subsets of \mathbb{R} that are not compact
 - (i) Non-compactness of the closed unit ball in C[0, 1]
 - (j) Continuous functions from C[0,1] to \mathbb{R} .
 - (k) Normed vector spaces and Banach spaces
 - (l) A metric not induced by a norm
- 3. Theorems (in a metric space unless otherwise stated):
 - (a) Properties of open sets and closed sets
 - (b) Characterizations of closed sets
 - (c) Properites of convegent sequences and Cauchy sequences
 - (d) Properties of subsets of complete metric spaces
 - (e) Charaterization of dense sets
 - (f) Baire's Theorems
 - (g) Properties of nowhere dense sets
 - (h) Characterizations of compactness ("Main theorem for compactness")
 - (i) Properties of compact sets

- (j) Bolzano Weierstrass Theorem (\mathbb{R})
- (k) Heine-Borel Theorem (\mathbb{R}^n)
- (l) Arzela-Ascoli Theorem (C(K))
- (m) Characterizations of continuity
- (n) Preservation of Compactness
- (o) Extreme Value Theorem
- (p) Properties of norms on vector spaces
- (q) Equivalence of Norms Theorem
- (r) Corollaries to Equivalence of Norms Theorem
- 4. Riemann integral
 - (a) Development of the Riemann integral via upper and lower sum
 - (b) upper and lower integrals
 - (c) Integrability criteria
 - (d) Fundamental Theorem of Calculus and Mean Value Theorem
 - (e) Basic properties of Riemann integral
- 5. Sequences and Series of Functions
 - (a) Pointwise convergence
 - (b) Uniform convergence
 - (c) Absolute convergence
 - (d) Cauchy criterion
 - (e) Term-by-term integration
 - (f) Term-by-term differentiation
 - (g) Weierstrass M-Test

- (h) Equicontinuity and Ascoli-Arzela Theorem
- 6. Measures
 - (a) Definition of outer measure and properties;
 - (b) Measurable sets
 - (c) Lebesgue meausre
 - (d) Elementary properties of measures
- 7. The Lebesgue integral
 - (a) Measurable functions
 - (b) Elementary properties of measurable functions
 - (c) Simple functions
 - (d) Approximation of measurable functions by simple functions
 - (e) Definition of the integral with respect to a measure
 - (f) Properties of Lebesgue integral
 - (g) Bounded convergence theorem
 - (h) Monotone convergence theorem, Fatou's Lemma, Lebesgue Dominated Convergence Theorem
 - (i) Relationship between Riemann and Lebesgue integrals, and Lebesgue's Riemann-Integrability Criterion

Last update: June 2018