Approximation by meromorphic matrix-valued functions

Alberto A. Condori

Department of Mathematics Florida Gulf Coast University acondori@fgcu.edu

Friday, February 1, 2013

- Nehari-Takagi problem for scalar-valued functions
 - **1** Generalization of Classical Interpolation Problems
 - Operator Theory
- Matrix-valued functions: Are there suitable analogs of all previous results?

The case of scalar-valued functions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

A class of meromorphic functions

Throughout,

- L^{∞} is the space of bounded functions on the unit circle \mathbb{T} ;
- *H*[∞] is the Hardy space of the unit disc
 D consisting of *L*[∞]
 functions whose Fourier coefficients of negative index vanish;
- for $k \ge 0$, \mathcal{B}_k is the set of Blaschke products of degree at most k, i.e. $b \in \mathcal{B}_k$ if and only if $b(\zeta) = c \prod_{j=1}^d \frac{\zeta - \lambda_j}{1 - \overline{\lambda}_j \zeta}$ where $d \le k$, $\lambda_i \in \mathbb{D}$, and $c \in \mathbb{T}$; and
- for k ≥ 0, H[∞]_(k) ^{def} = B⁻¹_kH[∞] is the set of meromorphic functions with at most k poles in the unit disc D (counting multiplicities) which are bounded near the unit circle T.

The Nehari-Takagi problem

Let $\varphi \in L^{\infty}$. The Nehari-Takagi problem is to find a $q \in H^{\infty}_{(k)}$ which is closest to φ with respect to the L^{∞} -norm, i.e. to find $q \in H^{\infty}_{(k)}$ such that

$$\|arphi-m{q}\|_{\infty}={\sf dist}_{L^{\infty}}(arphi,{\sf H}^{\infty}_{(k)})=\inf_{f\in{\cal H}^{\infty}_{(k)}}\|arphi-f\|_{\infty}.$$

Any such function q is called a *best approximant in* $H_{(k)}^{\infty}$ to φ .

Question 1. Existence? Yes.

Question 2. Uniqueness? Not always, but a sufficient condition is continuity of φ on \mathbb{T} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Who cares?

- Mathematicians who enjoy operator theoretic complex function theory
 - **③** Generalization of Classical Interpolation Problems
 - Connections with Operator Theory
- **②** Engineers interested in H^{∞} -control and signal theory
 - systems can be described in the "frequency domain" as multiplication operator by a "transfer function" which belongs to certain Hardy casses if the system has certain stability properties
 - rational functions are the "transfer functions" of systems having finite-dimensional state-space (and so these can be handled in practice)

・ 同 ト ・ ヨ ト ・ ヨ ト

Carathéodory-Fejér (CF) Interpolation

Given $c_0, c_1, \ldots, c_n \in \mathbb{C}$, the CF-problem is to find out when there is an $f \in H^\infty$ such that

$$\widehat{f}(j)=c_j,\; 0\leq j\leq n,\;\; ext{and}\;\; \|f\|_\infty\leq 1.$$

Consider the function $g = c_0 + c_1 z + \ldots + c_n z_n$. Then any function whose Taylor coefficients are c_0, c_1, \ldots, c_n is of the form $g + z^{n+1}h$ for some $h \in H^{\infty}$. Therefore, the CF-problem is solvable iff

$$1 \geq \inf\{\|g+z^{n+1}h\|_{\infty} : h \in H^{\infty}\} = \operatorname{dist}_{L^{\infty}}(\overline{z}^{n+1}g).$$

くほし くほし くほし

Generalization of Classical Interpolation Problems Connections with Operator Theory

Nevanlinna-Pick (NP) Interpolation

Given distinct points $\lambda_i \in \mathbb{D}$, $1 \le i \le n$, and points $w_i \in \mathbb{C}$, $1 \le i \le n$, the NP-problem is to find out when there is an $f \in H^{\infty}$ such that

$$f(\lambda_i) = w_i, \ 1 \leq i \leq n, \ \text{ and } \ \|f\|_{\infty} \leq 1.$$

Consider the functions

$$B_i = \prod_{j \neq i} rac{z - \lambda_j}{1 - ar{\lambda}_j z}, 1 \leq i \leq n, ext{ and } g = \sum_{i=1}^n rac{w_i}{B_i(\lambda_i)} B_i.$$

Then any function that interpolates w_i at λ_i is of the form g - Bh for some $h \in H^{\infty}$, where B a Blaschke product whose zeros are precisely $\lambda_1, \ldots, \lambda_n$. Thus, the NP-problem has a solution iff

$$1 \geq \inf\{\|g - Bh\| : h \in H^{\infty}\} = \operatorname{dist}_{L^{\infty}}(\bar{B}g, H^{\infty}).$$

4 同 1 4 三 1 4 三 1 4 二

Scalar-valued functions Matrix-valued functions Generalization of Classical Interpolati Connections with Operator Theory

Connections with Operator Theory: Hankel and Toeplitz

For $f \in L^2$, let \mathbb{P}_+ and \mathbb{P}_- denote the orthogonal projections onto $H^2 = \{f \in L^2 : \hat{f}(n) = 0 \text{ for } n < 0\}$ and $H^2_- = L^2 \ominus H^2$, i.e.

$$\mathbb{P}_+f=\sum_{n\geq 0}\hat{f}(n)z^n$$
 and $\mathbb{P}_-f=\sum_{n< 0}\hat{f}(n)z^n.$

Given $\varphi \in L^{\infty}$, we define the Hankel operator H_{φ} and the Toeplitz operator T_{φ} by

$$H_{\varphi}f = \mathbb{P}_{-}\varphi f$$
 and $T_{\varphi}f = \mathbb{P}_{+}\varphi f$, $f \in H^{2}$,

respectively.

Some classical results

- Kronecker (1881): A Hankel operator H_q has finite rank if and only if q ∈ H[∞]_(k). Consequently, P₋q is a rational function whose poles lie in D and rank H_q = deg P₋q.
- e Hartman (1958): ||H_φ||_e = dist_{L∞}(φ, H[∞] + C), where ||T||_e denotes the essential norm of the operator T, i.e.

$$\|T\|_{e} \stackrel{\text{def}}{=} \inf\{\|T - K\| : K \text{ is compact}\}.$$

Adamyan, Arov, Krein (1970): Existence of a best approximants in H[∞]_(k) and s_k(H_φ) = dist_{L[∞]}(φ, H[∞]_(k)), where s_k(T) denotes the kth singular value of the operator T, i.e.

$$s_k(T) \stackrel{\mathrm{def}}{=} \inf\{\|T - R\| : \operatorname{rank} R \leq k\}.$$

Characterization of the best meromorphic approximant

A function $\varphi \in L^{\infty}$ is called *k*-admissible if $||H_{\varphi}||_{e} < s_{k}(H_{\varphi})$ holds. E.g. functions in $C \setminus H_{(k)}^{\infty}$ are admissible.

Theorem (Peller (1990))

Let φ be k-admissible. Then q is the unique best meromorphic approximant in $H^\infty_{(k)}$ to φ iff

() $\varphi - q$ has constant modulus on \mathbb{T} , and

2 the Toeplitz operator $T_{\varphi-q}$ is Fredholm and has index

ind
$$T_{\varphi-q} = 2k + \mu$$
,

where μ denotes the multiplicity of the singular value $s_k(H_{\varphi})$ of the Hankel operator H_{φ} .

Why is this caracterization useful?

< 日 > < 同 > < 三 > < 三 >

Perturbation of Singular Values of Hankel Operators - 1

Theorem (Peller (1990))

Let φ be k-admissible and q be the best approx. in $H_{(k)}^{\infty}$ to φ . Suppose s is a singular value of H_{φ} of multiplicity $\mu \geq 2$ and

$$s=s_k(H_arphi)=s_{k+1}(H_arphi)=\ldots=s_{k+\mu-1}(H_arphi)>s_{k+\mu}(H_arphi)$$

Let $\lambda \in \mathbb{D}$, $b = \frac{z-\lambda}{1-\overline{\lambda}z}$, and $\psi = \overline{b}\varphi$. Then the following hold: 1 If λ is a zero of q, then

$$s = s_k(H_\psi) = s_{k+1}(H_\psi) = \ldots = s_{k+\mu}(H_\psi) > s_{k+\mu+1}(H_\psi).$$

2 If λ is not a zero of q, then

$$s = s_{k+1}(H_{\psi}) = s_{k+2}(H_{\psi}) = \ldots = s_{k+\mu-1}(H_{\psi}) > s_{k+\mu}(H_{\psi}).$$

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Perturbation of Singular Values of Hankel Operators - 2

Theorem (Peller (1990))

Let φ be k-admissible and q be the best approx. in $H_{(k)}^{\infty}$ to φ . Suppose s is a singular value of H_{φ} of multiplicity $\mu \geq 2$ and

$$s=s_k(H_arphi)=s_{k+1}(H_arphi)=\ldots=s_{k+\mu-1}(H_arphi)>s_{k+\mu}(H_arphi).$$

Let $\lambda \in \mathbb{D}$, $b = \frac{z-\lambda}{1-\lambda z}$, and $\psi = b\varphi$. Then the following hold: 1 If λ is a pole of q, then

$$s = s_{k-1}(H_{\psi}) = s_k(H_{\psi}) = \ldots = s_{k+\mu-1}(H_{\psi}) > s_{k+\mu}(H_{\psi}).$$

2 If λ is not a pole of q, then

$$s = s_{k+1}(H_{\psi}) = s_{k+2}(H_{\psi}) = \ldots = s_{k+\mu-2}(H_{\psi}) > s_{k+\mu-1}(H_{\psi}).$$

- 4 同 ト 4 ヨ ト 4 ヨ

Generalization of Classical Interpolation Problems Connections with Operator Theory

The degree of the best meromorphic approximant

Theorem (Peller-Khrushchëv (1982))

If φ is a rational function with poles outside \mathbb{T} of degree, then the best meromorphic approximant q in $H^{\infty}_{(k)}$ to φ is also rational and

$$\deg q \leq \deg \varphi - 1 \quad unless \ \varphi \in H^{\infty}_{(k)}.$$

The case of matrix-valued functions

Why should we do this?

In systems theory,

- scalar-valued functions correspond to single input single output systems
- matrix-valued functions correspond to multiple input multiple output systems

Notation

- Image M_n denotes the space of n × n matrices equipped with the operator norm || · ||_{M_n}.
- $L^{\infty}(\mathbb{M}_n)$ is equipped with $\|\Phi\|_{\infty} = \operatorname{ess sup}_{\zeta \in \mathbb{T}} \|\Phi(\zeta)\|_{\mathbb{M}_n}$.
- I → H[∞]_(k)(M_n) consists of matrix-valued functions Q with at most k poles in D.
- Q ∈ L[∞](M_n) is said to have at most k poles in D if there is a Blaschke-Potapov product B of degree k such that QB ∈ H[∞](M_n).

周 ト イ ヨ ト イ ヨ ト

What is a Blaschke-Potapov product?

A finite **Blaschke-Potapov product** is an $n \times n$ matrix-valued function of the form $B = UB_1 \dots B_m$, where

$$B_i(z) = rac{z-\lambda_i}{1-ar\lambda_i z} P_i + (I-P_i)$$

with $\lambda_i \in \mathbb{D}$ and orthogonal projection P_i on \mathbb{C}^n , $1 \le i \le m$, and U is a unitary matrix. We define deg $B = \sum_{i=1}^m \operatorname{rank} P_i$.

Why count poles in this way?

In nicer language:

$$B(z) = U_0 \begin{pmatrix} \frac{z-a_1}{1-\overline{a}_1 z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_1 \dots U_{k-1} \begin{pmatrix} \frac{z-a_k}{1-\overline{a}_k z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

Nehari-Takagi problem

Definition

Given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we say that Q is a **best approximation in** $H^{\infty}_{(k)}(\mathbb{M}_n)$ to Φ if Q has at most k poles and

$$\|\Phi - Q\|_{L^{\infty}(\mathbb{M}_n)} = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n)).$$

As before, given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we define

() the **Toeplitz operator** $T_{\Phi}: H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

$$T_{\Phi}f = \mathbb{P}_+ \Phi f$$
 for $f \in H^2(\mathbb{C}^n)$,

and

2 Hankel operator $H_{\Phi}: H^2(\mathbb{C}^n) \to H^2_{-}(\mathbb{C}^n)$ by

$$H_{\Phi}f = \mathbb{P}_{-}\Phi f$$
 for $f \in H^{2}(\mathbb{C}^{n})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Results for matrix-valued function

- (Known to specialists) A Hankel operator H_Q has finite rank if and only if Q ∈ H[∞]_(k). Consequently, P₋q is a rational function whose poles lie in D and rank H_q = deg P₋q.
- 2 Page (1970): $||H_{\Phi}|| = \operatorname{dist}_{L^{\infty}}(\Phi, H^{\infty}(\mathbb{M}_n))$
- Ball-Helton (1983), Treil (1986): Existence of a best approximants in H[∞]_(k) and s_k(H_φ) = dist_{L[∞]}(φ, H[∞]_(k)), where s_k(T) denotes the kth singular value of the operator T, i.e.

$$s_k(T) \stackrel{\text{def}}{=} \inf\{\|T - R\| : \operatorname{rank} R \leq k\}.$$

• Treil (1986): $||H_{\varphi}||_{e} = \text{dist}_{L^{\infty}}(\varphi, H^{\infty} + C)$, where $||T||_{e}$ denotes the essential norm of the operator T, i.e.

$$\|T\|_{e} \stackrel{\text{def}}{=} \inf\{\|T - K\| : K \text{ is compact}\}.$$

How about uniqueness of a best meromorphic approximant in $H^{\infty}_{(k)}(\mathbb{M}_n)$?

Superoptimal meromorphic approximation in $H^{\infty}_{(k)}(\mathbb{M}_n)$

Definition (Young)

Let $k \ge 0$ and $\Phi \in L^{\infty}(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \ge 0$, with respect to the *lexicographic* ordering:

Q minimizes $\operatorname{ess \, sup } s_0(\Phi(\zeta) - Q(\zeta))$ on $H^{\infty}_{(k)}(\mathbb{M}_n)$ then... minimize $\operatorname{ess \, sup } s_1(\Phi(\zeta) - Q(\zeta))$ then... minimize $\operatorname{ess \, sup } s_2(\Phi(\zeta) - Q(\zeta)) \dots$ and so on. $\zeta \in \mathbb{T}$

For $j \ge 0$, the number $t_j^{(k)} \stackrel{\text{def}}{=} \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the *jth superoptimal singular value of* Φ *of degree k*.

Superoptimal meromorphic approximation in $H^{\infty}_{(k)}(\mathbb{M}_n)$

Definition (Young)

Let $k \ge 0$ and $\Phi \in L^{\infty}(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \ge 0$, with respect to the *lexicographic* ordering:

$$Q \text{ minimizes } \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^{\infty}_{(k)}(\mathbb{M}_n)$$

then... minimize $\operatorname{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta))$
then... minimize $\operatorname{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \dots$ and so on.

For $j \ge 0$, the number $t_j^{(k)} \stackrel{\text{def}}{=} \operatorname{ess} \sup_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the *jth superoptimal singular value of* Φ *of degree k*.

Superoptimal meromorphic approximation in $H^{\infty}_{(k)}(\mathbb{M}_n)$

Definition (Young)

Let $k \ge 0$ and $\Phi \in L^{\infty}(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \ge 0$, with respect to the *lexicographic* ordering:

$$Q \text{ minimizes } \underset{\zeta \in \mathbb{T}}{\operatorname{ess sup}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^{\infty}_{(k)}(\mathbb{M}_n)$$

then... minimize $\underset{\zeta \in \mathbb{T}}{\operatorname{ess sup}} s_1(\Phi(\zeta) - Q(\zeta))$
then... minimize $\underset{\zeta \in \mathbb{T}}{\operatorname{ess sup}} s_2(\Phi(\zeta) - Q(\zeta)) \dots$ and so on.

For $j \ge 0$, the number $t_j^{(k)} \stackrel{\text{def}}{=} \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the *j*th superoptimal singular value of Φ of degree k.

k-admissibility and uniqueness of a superoptimal approximant

We say that Φ is *k*-admissible if $||H_{\Phi}||_{e}$ is less than the smallest non-zero superoptimal singular value of Φ of degree *k* and $s_{k}(H_{\Phi}) < s_{k-1}(H_{\Phi})$.

Theorem (Peller-Young (1994, 1996), Treil (1995))

If Φ is k-admissible, then Φ has a unique superoptimal meromorphic approximant in $H^{\infty}_{(k)}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}$, $j \ge 0$.

The Toeplitz operator with symbol $\Phi - Q$

Theorem (A.C. 2012)

Suppose

- **1** Φ is k-admissible and
- **2** Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and

ind $T_{\Phi-Q} = \dim \ker T_{\Phi-Q} > 0$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Toeplitz operator with symbol $\Phi - Q$

Theorem (A.C. 2012)

Suppose

1 Φ is k-admissible and

2 Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and

ind $T_{\Phi-Q} = \dim \ker T_{\Phi-Q} > 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A taste of the proof of dim ker $T_{\Phi-Q} < \infty$

Let
$$\Psi = \Phi - Q$$
 and $W = \Psi^* \Psi$. Then
ker $\mathcal{T}_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi||_2 \}$

② *W* is invertible a.e. on \mathbb{T} and $\|W(\zeta)^{-1}\| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$ for a.e. $\zeta \in \mathbb{T}$

 $W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi f||_2 \}$ $= W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||W^{1/2}f||_2 \}$ $= \{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : ||H_{\Psi}W^{-1/2}\xi||_2 = ||\xi||_2 \}$

Conclusion: The operator $H_{\Psi}W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2 -norm has norm equal to 1.

$$\|H_{\Psi}W^{-1/2}|W^{1/2}H^{2}(\mathbb{C}^{n})\|_{e} < 1$$

Hence, the space of maximizing vectors of $H_{\Psi}W^{-1/2}$ is finite dimensional.

伺 ト イ ヨ ト イ ヨ ト

A taste of the proof of dim ker $T_{\Phi-Q} < \infty$

Let
$$\Psi = \Phi - Q$$
 and $W = \Psi^* \Psi$. Then

• ker
$$T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi||_2 \}$$

2 *W* is invertible a.e. on \mathbb{T} and $\|W(\zeta)^{-1}\| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$ for a.e. $\zeta \in \mathbb{T}$

$$W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi f||_2 \} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||W^{1/2}f||_2 \} = \{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : ||H_{\Psi}W^{-1/2}\xi||_2 = ||\xi||_2 \}$$

Conclusion: The operator $H_{\Psi}W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2 -norm has norm equal to 1.

$$\|H_{\Psi}W^{-1/2}|W^{1/2}H^{2}(\mathbb{C}^{n})\|_{e} < 1$$

A taste of the proof of dim ker $T_{\Phi-Q} < \infty$

Let
$$\Psi = \Phi - Q$$
 and $W = \Psi^* \Psi$. Then

• ker
$$T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi||_2 \}$$

2
$$W$$
 is invertible a.e. on \mathbb{T} and
 $\|W(\zeta)^{-1}\| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$ for a.e. $\zeta \in \mathbb{T}$

$$W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi f||_2 \}$$

= $W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||W^{1/2}f||_2 \}$
= $\{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : ||H_{\Psi}W^{-1/2}\xi||_2 = ||\xi||_2 \}$

Conclusion: The operator $H_{\Psi}W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2 -norm has norm equal to 1.

$$\|H_{\Psi}W^{-1/2}|W^{1/2}H^{2}(\mathbb{C}^{n})\|_{e} < 1$$

A taste of the proof of dim ker $T_{\Phi-Q} < \infty$

Let
$$\Psi=\Phi-Q$$
 and $W=\Psi^*\Psi.$ Then

• ker
$$T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi||_2 \}$$

2 *W* is invertible a.e. on
$$\mathbb{T}$$
 and
 $\|W(\zeta)^{-1}\| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$ for a.e. $\zeta \in \mathbb{T}$

■
$$W^{1/2}$$
 ker $T_{\Psi} = W^{1/2}$ { $f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi f||_2$ }
= $W^{1/2}$ { $f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||W^{1/2}f||_2$ }
= { $\xi \in W^{1/2}H^2(\mathbb{C}^n) : ||H_{\Psi}W^{-1/2}\xi||_2 = ||\xi||_2$ }

Conclusion: The operator $H_{\Psi}W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2 -norm has norm equal to 1.

$$\| H_{\Psi} W^{-1/2} | W^{1/2} H^2(\mathbb{C}^n) \|_{e} < 1$$

A taste of the proof of dim ker $T_{\Phi-Q} < \infty$

Let
$$\Psi = \Phi - Q$$
 and $W = \Psi^* \Psi$. Then

• ker
$$T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi||_2 \}$$

2
$$W$$
 is invertible a.e. on \mathbb{T} and
 $\|W(\zeta)^{-1}\| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$ for a.e. $\zeta \in \mathbb{T}$

$$W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi f||_2 \}$$

= $W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||W^{1/2}f||_2 \}$
= $\{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : ||H_{\Psi}W^{-1/2}\xi||_2 = ||\xi||_2 \}$

Conclusion: The operator $H_{\Psi}W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2 -norm has norm equal to 1.

3
$$\|H_{\Psi}W^{-1/2}|W^{1/2}H^2(\mathbb{C}^n)\|_{e} < 1$$

A taste of the proof of dim ker $T_{\Phi-Q} < \infty$

Let
$$\Psi = \Phi - Q$$
 and $W = \Psi^* \Psi$. Then

• ker
$$T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi||_2 \}$$

2
$$W$$
 is invertible a.e. on \mathbb{T} and
 $\|W(\zeta)^{-1}\| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$ for a.e. $\zeta \in \mathbb{T}$

$$W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||\Psi f||_2 \} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : ||H_{\Psi}f||_2 = ||W^{1/2}f||_2 \} = \{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : ||H_{\Psi}W^{-1/2}\xi||_2 = ||\xi||_2 \}$$

Conclusion: The operator $H_{\Psi}W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2 -norm has norm equal to 1.

$$\| H_{\Psi} W^{-1/2} | W^{1/2} H^2(\mathbb{C}^n) \|_{\mathrm{e}} < 1$$

1

Can we compute the index of $T_{\Phi-Q}$?

<u>Question</u>: ind $T_{\Phi-Q} = 2k + \mu$? Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \overline{z}^5 + \frac{1}{3}\overline{z} & -\frac{1}{3}\overline{z}^2 \\ \overline{z}^4 & \frac{1}{3}\overline{z} \end{pmatrix}$. Then $s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \ s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$ $s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \ \text{and} \ s_5(H_{\Phi}) = \frac{1}{3},$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\bar{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Can we compute the index of $T_{\Phi-Q}$?

$$\underline{Question:} \text{ ind } T_{\Phi-Q} = 2k + \mu?$$
Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3}\bar{z} & -\frac{1}{3}\bar{z}^2 \\ \bar{z}^4 & \frac{1}{3}\bar{z} \end{pmatrix}$. Then
$$s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \, s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$$

$$s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \text{ and } s_5(H_{\Phi}) = \frac{1}{3}.$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\bar{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Can we compute the index of $T_{\Phi-Q}$?

$$\begin{aligned} \underline{Question:} & \text{ind } T_{\Phi-Q} = 2k + \mu? \\ \text{Let } \Phi &= \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3}\bar{z} & -\frac{1}{3}\bar{z}^2 \\ \bar{z}^4 & \frac{1}{3}\bar{z} \end{pmatrix}. \text{ Then} \\ & s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \ s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1, \\ & s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \text{ and } s_5(H_{\Phi}) = \frac{1}{3}, \end{aligned}$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\overline{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Can we compute the index of $T_{\Phi-Q}$?

$$\begin{aligned} \underline{Question:} & \text{ind } T_{\Phi-Q} = 2k + \mu? \\ \text{Let } \Phi &= \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3}\bar{z} & -\frac{1}{3}\bar{z}^2 \\ \bar{z}^4 & \frac{1}{3}\bar{z} \end{pmatrix}. \text{ Then} \\ & s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \, s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1, \\ & s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \text{ and } s_5(H_{\Phi}) = \frac{1}{3}, \end{aligned}$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\bar{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

A special subspace

Let B and Λ be Blaschke-Potapov products such that

ker
$$H_Q = BH^2(\mathbb{C}^n)$$
 and ker $H_{Q^t} = \Lambda H^2(\mathbb{C}^n)$.

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_\Phi \xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

$$U=\Lambda^t(\Phi-Q)B.$$

Theorem (A.C. (2012))

If the number of superoptimal singular values of Φ of degree k equals n, then

- 2 the Toeplitz operator T_U is Fredholm and
- ③ ind $T_U = \dim \ker T_U \ge n$.

A special subspace

Let B and Λ be Blaschke-Potapov products such that

$$\ker H_Q = BH^2(\mathbb{C}^n) \ \text{ and } \ \ker H_{Q^t} = \Lambda H^2(\mathbb{C}^n).$$

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_\Phi \xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

$$U=\Lambda^t(\Phi-Q)B.$$

Theorem (A.C. (2012))

If the number of superoptimal singular values of Φ of degree k equals n, then

$$D \mathcal{E} = B \ker T_U,$$

2 the Toeplitz operator T_U is Fredholm and

3 ind
$$T_U = \dim \ker T_U \ge n$$
.

The index formula

Theorem (A.C. (2012))

Let $\mathcal{E} = \{\xi \in \ker H_Q : ||H_{\Phi}\xi||_2 = ||(\Phi - Q)\xi||_2\}$. Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and has index

ind
$$T_{\Phi-Q} = 2k + \dim \mathcal{E}$$
.

In particular, dim ker $T_{\Phi-Q} \ge 2k + n$.

Corollary (A.C. (2012))

If all superoptimal singular values of degree k of Φ are equal, then

ind
$$T_{\Phi-Q} = \dim \ker T_{\Phi-Q} = 2k + \mu$$

holds, where μ denotes the multiplicity of the singular value $s_k(H_{\Phi})$.

The index formula

Theorem (A.C. (2012))

Let $\mathcal{E} = \{\xi \in \ker H_Q : ||H_{\Phi}\xi||_2 = ||(\Phi - Q)\xi||_2\}$. Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and has index

ind
$$T_{\Phi-Q} = 2k + \dim \mathcal{E}$$
.

In particular, dim ker $T_{\Phi-Q} \ge 2k + n$.

Corollary (A.C. (2012))

If all superoptimal singular values of degree k of Φ are equal, then

ind
$$T_{\Phi-Q} = \operatorname{dim} \ker T_{\Phi-Q} = 2k + \mu$$

holds, where μ denotes the multiplicity of the singular value $s_k(H_{\Phi})$.

Sharp estimates on the "degree" of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2 × 2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

 $\deg Q \le 2 \deg \Phi - 3$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

・ 同 ト ・ ヨ ト ・ ヨ ト

Sharp estimates on the "degree" of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2×2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

 $\deg Q \leq 2 \deg \Phi - 3$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

Sharp estimates on the "degree" of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2 × 2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

$$\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

伺 ト イ ヨ ト イ ヨ ト

Sharp estimates on the "degree" of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2 × 2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

くほし くほし くほし

Open problem #2 & # 3

#2. How can we verify that a matrix-valued function $\Phi \in L^{\infty}$ has *n* non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal meromorphic approximant.

Thank you!

- 4 B b 4 B b

Open problem #2 & # 3

#2. How can we verify that a matrix-valued function $\Phi \in L^{\infty}$ has *n* non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal meromorphic approximant.

Thank you!

.