Approximation by meromorphic matrix-valued functions

Alberto A. Condori

Department of Mathematics
Florida Gulf Coast University
acondori@fgcu.edu

Friday, February 1, 2013
Our plan

1. Nehari-Takagi problem for scalar-valued functions
 1. Generalization of Classical Interpolation Problems
 2. Operator Theory

2. Matrix-valued functions: Are there suitable analogs of all previous results?
The case of scalar-valued functions
A class of meromorphic functions

Throughout,

1. L^∞ is the space of bounded functions on the unit circle \mathbb{T};

2. H^∞ is the Hardy space of the unit disc \mathbb{D} consisting of L^∞ functions whose Fourier coefficients of negative index vanish;

3. for $k \geq 0$, B_k is the set of Blaschke products of degree at most k, i.e. $b \in B_k$ if and only if $b(\zeta) = c \prod_{j=1}^{d} \frac{\zeta - \lambda_j}{1 - \bar{\lambda}_j \zeta}$ where $d \leq k$, $\lambda_j \in \mathbb{D}$, and $c \in \mathbb{T}$; and

4. for $k \geq 0$, $H^\infty_{(k)} \overset{\text{def}}{=} B_k^{-1} H^\infty$ is the set of meromorphic functions with at most k poles in the unit disc \mathbb{D} (counting multiplicities) which are bounded near the unit circle \mathbb{T}.
Let $\varphi \in L^\infty$. The **Nehari-Takagi problem** is to find a $q \in H^\infty_\(k\)$ which is closest to φ with respect to the L^∞-norm, i.e. to find $q \in H^\infty_\(k\)$ such that

$$\|\varphi - q\|_\infty = \text{dist}_{L^\infty}(\varphi, H^\infty_\(k\)) = \inf_{f \in H^\infty_\(k\)} \|\varphi - f\|_\infty.$$

Any such function q is called a **best approximant in $H^\infty_\(k\)$ to φ**.

Question 1. *Existence?* Yes.

Question 2. *Uniqueness?* Not always, but a sufficient condition is continuity of φ on \mathbb{T}.
Who cares?

1. Mathematicians who enjoy operator theoretic complex function theory
 - Generalization of Classical Interpolation Problems
 - Connections with Operator Theory

2. Engineers interested in H^∞-control and signal theory
 - Systems can be described in the “frequency domain” as multiplication operator by a “transfer function” which belongs to certain Hardy classes if the system has certain stability properties
 - Rational functions are the “transfer functions” of systems having finite-dimensional state-space (and so these can be handled in practice)
Given \(c_0, c_1, \ldots, c_n \in \mathbb{C} \), the CF-problem is to find out when there is an \(f \in H^\infty \) such that

\[
\hat{f}(j) = c_j, \quad 0 \leq j \leq n, \quad \text{and} \quad \|f\|_{\infty} \leq 1.
\]

Consider the function \(g = c_0 + c_1 z + \ldots + c_n z^n \). Then any function whose Taylor coefficients are \(c_0, c_1, \ldots, c_n \) is of the form \(g + z^{n+1} h \) for some \(h \in H^\infty \). Therefore, the CF-problem is solvable iff

\[
1 \geq \inf\{\|g + z^{n+1} h\|_{\infty} : h \in H^\infty\} = \text{dist}_{L^\infty}(\bar{z}^{n+1} g).
\]
Nevanlinna-Pick (NP) Interpolation

Given distinct points \(\lambda_i \in \mathbb{D}, 1 \leq i \leq n \), and points \(w_i \in \mathbb{C}, 1 \leq i \leq n \), the NP-problem is to find out when there is an \(f \in H^\infty \) such that

\[
f(\lambda_i) = w_i, \ 1 \leq i \leq n, \ \text{and} \ \|f\|_\infty \leq 1.
\]

Consider the functions

\[
B_i = \prod_{j \neq i} \frac{z - \lambda_j}{1 - \bar{\lambda}_j z}, 1 \leq i \leq n, \ \text{and} \ g = \sum_{i=1}^n \frac{w_i}{B_i(\lambda_i)} B_i.
\]

Then any function that interpolates \(w_i \) at \(\lambda_i \) is of the form \(g - Bh \) for some \(h \in H^\infty \), where \(B \) a Blaschke product whose zeros are precisely \(\lambda_1, \ldots, \lambda_n \). Thus, the NP-problem has a solution iff

\[
1 \geq \inf \{ \|g - Bh\| : h \in H^\infty \} = \operatorname{dist}_{L^\infty}(\bar{B}g, H^\infty).
\]
For $f \in L^2$, let \mathbb{P}_+ and \mathbb{P}_- denote the orthogonal projections onto $H^2 = \{ f \in L^2 : \hat{f}(n) = 0 \text{ for } n < 0 \}$ and $H^- = L^2 \ominus H^2$, i.e.

$$\mathbb{P}_+ f = \sum_{n \geq 0} \hat{f}(n) z^n \quad \text{and} \quad \mathbb{P}_- f = \sum_{n < 0} \hat{f}(n) z^n.$$

Given $\varphi \in L^\infty$, we define the Hankel operator H_φ and the Toeplitz operator T_φ by

$$H_\varphi f = \mathbb{P}_- \varphi f \quad \text{and} \quad T_\varphi f = \mathbb{P}_+ \varphi f,$$

$f \in H^2$,

respectively.
Some classical results

1. Kronecker (1881): A Hankel operator H_q has finite rank if and only if $q \in H^\infty(k)$. Consequently, \mathbb{P}_-q is a rational function whose poles lie in \mathbb{D} and rank $H_q = \deg \mathbb{P}_-q$.

2. Nehari (1957): $\|H_\varphi\| = \text{dist}_{L^\infty}(\varphi, H^\infty)$

3. Hartman (1958): $\|H_\varphi\|_e = \text{dist}_{L^\infty}(\varphi, H^\infty + C)$, where $\|T\|_e$ denotes the essential norm of the operator T, i.e.

$$\|T\|_e \overset{\text{def}}{=} \inf \{ \|T - K\| : K \text{ is compact} \}.$$

4. Adamyan, Arov, Krein (1970): Existence of a best approximants in $H^\infty(k)$ and $s_k(H_\varphi) = \text{dist}_{L^\infty}(\varphi, H^\infty(k))$, where $s_k(T)$ denotes the kth singular value of the operator T, i.e.

$$s_k(T) \overset{\text{def}}{=} \inf \{ \|T - R\| : \text{rank } R \leq k \}.$$
A function $\varphi \in L^\infty$ is called k-admissible if $\|H\varphi\|_e < s_k(H\varphi)$ holds. E.g. functions in $C \setminus H^\infty_{(k)}$ are admissible.

Theorem (Peller (1990))

Let φ be k-admissible. Then q is the unique best meromorphic approximant in $H^\infty_{(k)}$ to φ iff

1. $\varphi - q$ has constant modulus on \mathbb{T}, and
2. the Toeplitz operator $T_{\varphi - q}$ is Fredholm and has index

$$\text{ind } T_{\varphi - q} = 2k + \mu,$$

where μ denotes the multiplicity of the singular value $s_k(H\varphi)$ of the Hankel operator $H\varphi$.

Why is this characterization useful?
Theorem (Peller (1990))

Let φ be k-admissible and q be the best approx. in $H_{(k)}^\infty$ to φ. Suppose s is a singular value of H_φ of multiplicity $\mu \geq 2$ and

$$s = s_k(H_\varphi) = s_{k+1}(H_\varphi) = \ldots = s_{k+\mu-1}(H_\varphi) > s_{k+\mu}(H_\varphi).$$

Let $\lambda \in \mathbb{D}$, $b = \frac{z - \lambda}{1 - \lambda z}$, and $\psi = \overline{b}\varphi$. Then the following hold:

1. If λ is a zero of q, then

$$s = s_k(H_\psi) = s_{k+1}(H_\psi) = \ldots = s_{k+\mu}(H_\psi) > s_{k+\mu+1}(H_\psi).$$

2. If λ is not a zero of q, then

$$s = s_{k+1}(H_\psi) = s_{k+2}(H_\psi) = \ldots = s_{k+\mu-1}(H_\psi) > s_{k+\mu}(H_\psi).$$
Theorem (Peller (1990))

Let φ be k-admissible and q be the best approx. in $H_\infty^{(k)}$ to φ. Suppose s is a singular value of H_φ of multiplicity $\mu \geq 2$ and

$$s = s_k(H_\varphi) = s_{k+1}(H_\varphi) = \ldots = s_{k+\mu-1}(H_\varphi) > s_{k+\mu}(H_\varphi).$$

Let $\lambda \in \mathbb{D}$, $b = \frac{z-\lambda}{1-\lambda z}$, and $\psi = b\varphi$. Then the following hold:

1. **If λ is a pole of q, then**
 $$s = s_{k-1}(H_\psi) = s_k(H_\psi) = \ldots = s_{k+\mu-1}(H_\psi) > s_{k+\mu}(H_\psi).$$

2. **If λ is not a pole of q, then**
 $$s = s_{k+1}(H_\psi) = s_{k+2}(H_\psi) = \ldots = s_{k+\mu-2}(H_\psi) > s_{k+\mu-1}(H_\psi).$$
The degree of the best meromorphic approximant

Theorem (Peller-Khrushčëv (1982))

If \(\varphi \) is a rational function with poles outside \(\mathbb{T} \) of degree, then the best meromorphic approximant \(q \) in \(H^\infty_{(k)} \) to \(\varphi \) is also rational and

\[
\deg q \leq \deg \, \varphi - 1 \quad \text{unless} \quad \varphi \in H^\infty_{(k)}.
\]
The case of matrix-valued functions

Why should we do this?

In systems theory,

1. scalar-valued functions correspond to single input - single output systems
2. matrix-valued functions correspond to multiple input - multiple output systems
Notation

1. \mathbb{M}_n denotes the space of $n \times n$ matrices equipped with the operator norm $\| \cdot \|_{\mathbb{M}_n}$.

2. $L^\infty(\mathbb{M}_n)$ is equipped with $\| \Phi \|_\infty = \text{ess sup} \| \Phi(\zeta) \|_{\mathbb{M}_n}$.

3. $H^\infty_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D}.

4. $Q \in L^\infty(\mathbb{M}_n)$ is said to have **at most** k poles in \mathbb{D} if there is a Blaschke-Potapov product B of degree k such that $QB \in H^\infty(\mathbb{M}_n)$.
What is a Blaschke-Potapov product?

A finite **Blaschke-Potapov product** is an $n \times n$ matrix-valued function of the form $B = UB_1 \ldots B_m$, where

$$B_i(z) = \frac{z - \lambda_i}{1 - \overline{\lambda}_i z} P_i + (I - P_i)$$

with $\lambda_i \in \mathbb{D}$ and orthogonal projection P_i on \mathbb{C}^n, $1 \leq i \leq m$, and U is a unitary matrix. We define $\deg B = \sum_{i=1}^{m} \text{rank } P_i$.

Why count poles in this way?

In nicer language:

$$B(z) = U_0 \left(\begin{array}{cc}
\frac{z-a_1}{1-\overline{a}_1 z} & 0 \\
0 & I_{n-1}
\end{array} \right) U_1 \ldots U_{k-1} \left(\begin{array}{cc}
\frac{z-a_k}{1-\overline{a}_k z} & 0 \\
0 & I_{n-1}
\end{array} \right) U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.
Nehari-Takagi problem

Definition

Given $\Phi \in L^\infty(M_n)$, we say that Q is a best approximation in $H^\infty_k(M_n)$ to Φ if Q has at most k poles and

$$\|\Phi - Q\|_{L^\infty(M_n)} = \text{dist}_{L^\infty(M_n)}(\Phi, H^\infty_k(M_n)).$$

As before, given $\Phi \in L^\infty(M_n)$, we define

1. the Toeplitz operator $T_\Phi : H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

$$T_\Phi f = \mathbb{P}_+ \Phi f \quad \text{for } f \in H^2(\mathbb{C}^n),$$

and

2. the Hankel operator $H_\Phi : H^2(\mathbb{C}^n) \to H_-^2(\mathbb{C}^n)$ by

$$H_\Phi f = \mathbb{P}_- \Phi f \quad \text{for } f \in H^2(\mathbb{C}^n).$$
(Known to specialists) A Hankel operator H_Q has finite rank if and only if $Q \in H^\infty_{(k)}$. Consequently, P_q is a rational function whose poles lie in \mathbb{D} and rank $H_q = \deg P_q$.

Page (1970): $\|H_P\| = \text{dist}_{L^\infty}(P, H^\infty(M_n))$

Ball-Helton (1983), Treil (1986): Existence of a best approximants in $H^\infty_{(k)}$ and $s_k(H_\varphi) = \text{dist}_{L^\infty}(\varphi, H^\infty_{(k)})$, where $s_k(T)$ denotes the kth singular value of the operator T, i.e.

$$ s_k(T) \overset{\text{def}}{=} \inf \{ \| T - R \| : \text{rank} \ R \leq k \}. $$

Treil (1986): $\|H_\varphi\|_e = \text{dist}_{L^\infty}(\varphi, H^\infty + C)$, where $\| T \|_e$ denotes the essential norm of the operator T, i.e.

$$ \| T \|_e \overset{\text{def}}{=} \inf \{ \| T - K \| : K \text{ is compact} \}. $$

How about uniqueness of a best meromorphic approximant in $H^\infty_{(k)}(\mathbb{M}_n)$?
Definition (Young)

Let $k \geq 0$ and $\Phi \in L^\infty(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta))$, $j \geq 0$, with respect to the lexicographic ordering:

$$Q \text{ minimizes } \text{ess sup}_{\zeta \in T} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^{\infty}_{(k)}(\mathbb{M}_n)$$

then...
$$\text{then } \text{minimize } \text{ess sup}_{\zeta \in T} s_1(\Phi(\zeta) - Q(\zeta))$$

then...
$$\text{then } \text{minimize } \text{ess sup}_{\zeta \in T} s_2(\Phi(\zeta) - Q(\zeta)) \ldots \text{ and so on.}$$

For $j \geq 0$, the number $t^{(k)}_j \overset{\text{def}}{=} \text{ess sup}_{\zeta \in T} s_j(\Phi(\zeta) - Q(\zeta))$ is called the jth superoptimal singular value of Φ of degree k.
Superoptimal meromorphic approximation in $H^\infty_k(M_n)$

Definition (Young)

Let $k \geq 0$ and $\Phi \in L^\infty(M_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^\infty_k(M_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta))$, $j \geq 0$, with respect to the lexicographic ordering:

\[
Q \text{ minimizes } \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^\infty_k(M_n)
\]

then...

\[
\text{ then... minimize } \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta))
\]

then...

\[
\text{ then... minimize } \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \ldots \text{ and so on.}
\]

For $j \geq 0$, the number $t_j^{(k)} \overset{\text{def}}{=} \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the jth superoptimal singular value of Φ of degree k.
Definition (Young)

Let $k \geq 0$ and $\Phi \in L^\infty(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta))$, $j \geq 0$, with respect to the lexicographic ordering:

$$Q \text{ minimizes } \quad \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \quad \text{on } H^{\infty}_{(k)}(\mathbb{M}_n)$$

then... minimize $\text{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta))$

then... minimize $\text{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta))$... and so on.

For $j \geq 0$, the number $t_j^{(k)} \overset{\text{def}}{=} \text{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the jth superoptimal singular value of Φ of degree k.

We say that Φ is k-admissible if $\|H_\Phi\|_e$ is less than the smallest non-zero superoptimal singular value of Φ of degree k and $s_k(H_\Phi) < s_{k-1}(H_\Phi)$.

*If Φ is k-admissible, then Φ has a unique superoptimal meromorphic approximant in $H_\infty^{(k)}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}$, $j \geq 0$.***
Theorem (A.C. 2012)

Suppose

1. \(\Phi \) is \(k \)-admissible and
2. \(\Phi \) has \(n \) non-zero superoptimal singular values of degree \(k \).

Then the Toeplitz operator \(T_{\Phi - Q} \) is Fredholm and

\[
\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} > 0.
\]
Theorem (A.C. 2012)

Suppose

1. Φ is k-admissible and
2. Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} > 0.$$
Let $\Psi = \Phi - Q$ and $W = \Psi^*\Psi$. Then

1. $\ker T_\Psi = \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi \|_2 \}$

2. W is invertible a.e. on \mathbb{T} and

\[
\| W(\zeta)^{-1} \| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2} \text{ for a.e. } \zeta \in \mathbb{T}
\]

3. $W^{1/2} \ker T_\Psi = W^{1/2}\{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi f \|_2 \} = W^{1/2}\{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| W^{1/2}f \|_2 \} = \{ \xi \in W^{1/2}H^2(\mathbb{C}^n) : \| H_\Psi W^{-1/2}\xi \|_2 = \| \xi \|_2 \}$

Conclusion: The operator $H_\Psi W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2-norm has norm equal to 1.

4. $\| H_\Psi W^{-1/2}|W^{1/2}H^2(\mathbb{C}^n)\|_e < 1$

Hence, the space of maximizing vectors of $H_\Psi W^{-1/2}$ is finite dimensional.
Let $\Psi = \Phi - Q$ and $W = \Psi^*\Psi$. Then

1. $\ker T_\Psi = \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi f \|_2 \}$

2. W is invertible a.e. on \mathbb{T} and
$$\| W(\zeta)^{-1} \| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2}$$
for a.e. $\zeta \in \mathbb{T}$

3. $W^{1/2} \ker T_\Psi = W^{1/2}\{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi f \|_2 \}$
 $$= W^{1/2}\{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| W^{1/2} f \|_2 \}$$
 $$= \{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : \| H_\Psi W^{-1/2} \xi \|_2 = \| \xi \|_2 \}$$

Conclusion: The operator $H_\Psi W^{-1/2}$ defined on $W^{1/2} H^2(\mathbb{C}^n)$ and equipped with the L^2-norm has norm equal to 1.

4. $\| H_\Psi W^{-1/2} \|_{W^{1/2} H^2(\mathbb{C}^n)} < 1$

Hence, the space of maximizing vectors of $H_\Psi W^{-1/2}$ is finite dimensional.
Let $\Psi = \Phi - Q$ and $W = \Psi^*\Psi$. Then

1. $\ker T_\Psi = \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi \|_2 \}$

2. W is invertible a.e. on \mathbb{T} and
\[
\| W(\zeta)^{-1} \| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2} \text{ for a.e. } \zeta \in \mathbb{T}
\]

3. $W^{1/2} \ker T_\Psi = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi f \|_2 \}$
\[
= W^{1/2} \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| W^{1/2} f \|_2 \}
\]
\[
= \{ \xi \in W^{1/2}H^2(\mathbb{C}^n) : \| H_\Psi W^{-1/2} \xi \|_2 = \| \xi \|_2 \}
\]

Conclusion: The operator $H_\Psi W^{-1/2}$ defined on $W^{1/2}H^2(\mathbb{C}^n)$ and equipped with the L^2-norm has norm equal to 1.

4. $\| H_\Psi W^{-1/2} W^{1/2}H^2(\mathbb{C}^n) \|_e < 1$

Hence, the space of maximizing vectors of $H_\Psi W^{-1/2}$ is finite dimensional.
A taste of the proof of \(\text{dim ker } T_{\Phi - Q} < \infty \)

Let \(\Psi = \Phi - Q \) and \(W = \Psi^*\Psi \). Then

1. \(\ker T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : \| H_{\Psi}f \|_2 = \| \Psi \|_2 \} \)

2. \(W \) is invertible a.e. on \(\mathbb{T} \) and
 \[\| W(\zeta)^{-1} \| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2} \] for a.e. \(\zeta \in \mathbb{T} \)

3. \(W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : \| H_{\Psi}f \|_2 = \| \Psi f \|_2 \} \)
 \[= W^{1/2} \{ f \in H^2(\mathbb{C}^n) : \| H_{\Psi}f \|_2 = \| W^{1/2}f \|_2 \} \]
 \[= \{ \xi \in W^{1/2}H^2(\mathbb{C}^n) : \| H_{\Psi}W^{-1/2}\xi \|_2 = \| \xi \|_2 \} \]

Conclusion: The operator \(H_{\Psi}W^{-1/2} \) defined on \(W^{1/2}H^2(\mathbb{C}^n) \) and equipped with the \(L^2 \)-norm has norm equal to 1.

4. \(\| H_{\Psi}W^{-1/2}|W^{1/2}H^2(\mathbb{C}^n)|_e \| < 1 \)

Hence, the space of maximizing vectors of \(H_{\Psi}W^{-1/2} \) is finite dimensional.
A taste of the proof of \(\dim \ker T_{\Phi - Q} < \infty \)

Let \(\Psi = \Phi - Q \) and \(W = \Psi^*\Psi \). Then

1. \(\ker T_\Psi = \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi \|_2 \} \)

2. \(W \) is invertible a.e. on \(\mathbb{T} \) and
 \[\| W(\zeta)^{-1} \| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2} \text{ for a.e. } \zeta \in \mathbb{T} \]

3. \(W^{1/2} \ker T_\Psi = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| \Psi f \|_2 \} \)
 = \(W^{1/2} \{ f \in H^2(\mathbb{C}^n) : \| H_\Psi f \|_2 = \| W^{1/2} f \|_2 \} \)
 = \{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : \| H_\Psi W^{-1/2} \xi \|_2 = \| \xi \|_2 \} \)

Conclusion: The operator \(H_\Psi W^{-1/2} \) defined on \(W^{1/2} H^2(\mathbb{C}^n) \) and equipped with the \(L^2 \)-norm has norm equal to 1.

4. \(\| H_\Psi W^{-1/2} | W^{1/2} H^2(\mathbb{C}^n) \|_e < 1 \)

Hence, the space of maximizing vectors of \(H_\Psi W^{-1/2} \) is finite dimensional.
A taste of the proof of \(\dim \ker T_{\Phi - Q} < \infty \)

Let \(\Psi = \Phi - Q \) and \(W = \Psi^* \Psi \). Then

1. \(\ker T_{\Psi} = \{ f \in H^2(\mathbb{C}^n) : \| H_{\Psi} f \|_2 = \| \Psi \|_2 \} \)

2. \(W \) is invertible a.e. on \(\mathbb{T} \) and
 \[\| W(\zeta)^{-1} \| = s_{n-1}^{-1}(W(\zeta)) = t_{n-1}^{-2} \text{ for a.e. } \zeta \in \mathbb{T} \]

3. \(W^{1/2} \ker T_{\Psi} = W^{1/2} \{ f \in H^2(\mathbb{C}^n) : H_{\Psi} f \|_2 = \| \Psi f \|_2 \} \)
 \[= W^{1/2} \{ f \in H^2(\mathbb{C}^n) : H_{\Psi} f \|_2 = \| W^{1/2} f \|_2 \} \]
 \[= \{ \xi \in W^{1/2} H^2(\mathbb{C}^n) : H_{\Psi} W^{-1/2} \xi \|_2 = \| \xi \|_2 \} \]

Conclusion: The operator \(H_{\Psi} W^{-1/2} \) defined on \(W^{1/2} H^2(\mathbb{C}^n) \) and equipped with the \(L^2 \)-norm has norm equal to 1.

4. \(\| H_{\Psi} W^{-1/2} \|_e < 1 \)

Hence, the space of maximizing vectors of \(H_{\Psi} W^{-1/2} \) is finite dimensional.
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{pmatrix}$. Then

$$s_0(\mathcal{H}_\Phi) = \frac{\sqrt{10}}{3}, \quad s_1(\mathcal{H}_\Phi) = s_2(\mathcal{H}_\Phi) = s_3(\mathcal{H}_\Phi) = 1,$$

$$s_4(\mathcal{H}_\Phi) = \frac{1}{\sqrt{2}}, \quad \text{and } s_5(\mathcal{H}_\Phi) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(\mathcal{H}_\Phi)$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3} \bar{z} & 0 \\ 0 & 0 \end{pmatrix}$.

However, $\text{ind } T_{\Phi - Q} = \text{dim ker } T_{\Phi - Q} = 4$ even though $2k + \mu = 5$!
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{pmatrix}$. Then

$$s_0(H_\Phi) = \frac{\sqrt{10}}{3}, \quad s_1(H_\Phi) = s_2(H_\Phi) = s_3(H_\Phi) = 1,$$

$$s_4(H_\Phi) = \frac{1}{\sqrt{2}}, \quad \text{and } s_5(H_\Phi) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_\Phi)$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3} \bar{z} & 0 \\ 0 & 0 \end{pmatrix}$.

However, $\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 4$ even though $2k + \mu = 5$!
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{pmatrix}$. Then

$$s_0(H_\Phi) = \frac{\sqrt{10}}{3}, \quad s_1(H_\Phi) = s_2(H_\Phi) = s_3(H_\Phi) = 1,$$

$$s_4(H_\Phi) = \frac{1}{\sqrt{2}}, \quad \text{and } s_5(H_\Phi) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_\Phi)$.

The superoptimal approximant of Φ with at most 1 pole is

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3} \bar{z} & 0 \\ 0 & 0 \end{pmatrix}.$$

However, $\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 4$ even though $2k + \mu = 5$!
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{pmatrix}$. Then

$$s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \quad s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1, \quad s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \quad \text{and } s_5(H_{\Phi}) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3} \bar{z} & \emptyset \\ \emptyset & \emptyset \end{pmatrix}.$$

However, $\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 4$ even though $2k + \mu = 5$.

Alberto A. Condori
Approximation by meromorphic matrix-valued functions
A special subspace

Let B and Λ be Blaschke-Potapov products such that
\[
\ker H_Q = BH^2(\mathbb{C}^n) \quad \text{and} \quad \ker H_{Q^t} = \Lambda H^2(\mathbb{C}^n).
\]

Let
\[
\mathcal{E} = \{ \xi \in \ker H_Q : \|H_{\Phi}\xi\|_2 = \|(\Phi - Q)\xi\|_2 \}
\]
and
\[
U = \Lambda^t(\Phi - Q)B.
\]

Theorem (A.C. (2012))

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $\mathcal{E} = B \ker T\!U$,
2. the Toeplitz operator $T\!U$ is Fredholm and
3. $\text{ind } T\!U = \dim \ker T\!U \geq n$.
A special subspace

Let B and Λ be Blaschke-Potapov products such that

$$\ker H_Q = BH^2(\mathbb{C}^n) \quad \text{and} \quad \ker H_Q^t = \Lambda H^2(\mathbb{C}^n).$$

Let

$$\mathcal{E} = \{ \xi \in \ker H_Q : \|H\Phi \xi\|_2 = \|(\Phi - Q)\xi\|_2 \}$$

and

$$U = \Lambda^t(\Phi - Q)B.$$

Theorem (A.C. (2012))

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $\mathcal{E} = B \ker T_U$,

2. the Toeplitz operator T_U is Fredholm and

3. $\text{ind } T_U = \dim \ker T_U \geq n.$
The index formula

Theorem (A.C. (2012))

Let \(\mathcal{E} = \{ \xi \in \ker H_Q : \| H_\Phi \xi \|_2 = \| (\Phi - Q) \xi \|_2 \} \). Then the Toeplitz operator \(T_{\Phi - Q} \) is Fredholm and has index

\[
\text{ind } T_{\Phi - Q} = 2k + \dim \mathcal{E}.
\]

In particular, \(\dim \ker T_{\Phi - Q} \geq 2k + n \).

Corollary (A.C. (2012))

If all superoptimal singular values of degree \(k \) of \(\Phi \) are equal, then

\[
\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 2k + \mu
\]

holds, where \(\mu \) denotes the multiplicity of the singular value \(s_k(H_\Phi) \).
The index formula

Theorem (A.C. (2012))

Let $\mathcal{E} = \{\xi \in \ker H_Q : \|H_\Phi \xi\|_2 = \|(\Phi - Q)\xi\|_2\}$. Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and has index

$$\text{ind } T_{\Phi - Q} = 2k + \dim \mathcal{E}.$$

In particular, $\dim \ker T_{\Phi - Q} \geq 2k + n$.

Corollary (A.C. (2012))

If all superoptimal singular values of degree k of Φ are equal, then

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 2k + \mu$$

holds, where μ denotes the multiplicity of the singular value $s_k(H_\Phi)$.

Open problem #1

Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

$$\deg Q \leq \deg \Phi - 2 \text{ unless } \Phi \in H^\infty(M_2).$$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Open problem #1

Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

\[
\text{deg } Q \leq \text{deg } \Phi - 2 \quad \text{unless } \Phi \in H^\infty(\mathbb{M}_2).
\]

In general, one has

\[
\text{deg } Q \leq 2 \text{deg } \Phi - 3
\]

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

$$\deg Q \leq \deg \Phi - 2 \quad \text{unless} \quad \Phi \in H^\infty(\mathbb{M}_2).$$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Open problem #1

Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin (2007))

If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

$$\deg Q \leq \deg \Phi - 2 \text{ unless } \Phi \in H^\infty(\mathbb{M}_2).$$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Open problem #2 & #3

#2. How can we verify that a matrix-valued function $\Phi \in L^\infty$ has n non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal meromorphic approximant.

Thank you!
Open problem #2 & #3

#2. How can we verify that a matrix-valued function $\Phi \in L^\infty$ has n non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal meromorphic approximant.

Thank you!