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The problem

Question

Among all simple closed curves in the plane with a specified length
`, which one encloses the largest possible area?

So, after some thought, one obtains a natural candidate:

The circle.
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The problem
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Among all simple closed curves in the plane with a specified length
`, which one encloses the largest possible area?

So, after some thought, one obtains a natural candidate:
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Curves in R2

A curve ~r in R2 is a continuous (vector-valued) function
~r : [a, b]→ R2.

So, ~r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b, where x and y are
continuous real-valued functions on [a, b].

Figure: ~r(t) = 〈2 cos(t), 2 sin(t)〉 for 0 ≤ t ≤ π
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Image of a curve

Two distinct curves may trace out the same path in the plane.

Figure: ~a(t) = 〈t, t2〉 on [0, 2] and ~b(t) = 〈2t, 4t2〉 on [0, 1]
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Length of a curve

If the derivative ~r ′ exists and is continuous on [a, b], then

`(~r) =

∫ b

a
|~r ′(t)| dt.

Note: |~v | =
√

a2 + b2 when ~v = 〈a, b〉.

Example

If ~r(t) = 〈3 cos(t), 3 sin(t)〉 for 0 ≤ t ≤ 2π, then

~r ′(t) = 〈−3 sin(t), 3 cos(t)〉, |~r ′(t)| = 3 and so `(~r) = 6π.
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Re-parametrization by arc-length - Part 1

In particular, if ~r ′ is continuous and non-zero, then

1 ϕ(t) =

∫ t

a
|~r ′(τ)| dτ ,

2 ϕ′(t) = |~r ′(t)| > 0,

3 s = ϕ(t) is strictly increasing and so has an inverse function
t = ψ(s),and finally

4 the function ~γ(s) = (~r ◦ ψ)(s) has derivative

~γ ′(s) = ~r ′(ψ(s)) · ψ′(s)= ~r ′(ψ(s)) · 1

ϕ′(ψ(s))
=

~r ′(ψ(s))

|~r ′(ψ(s))|
.
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Re-parametrization by arc-length - Part 2

Conclusion: If ~r ′ is continuous and non-zero, then ~r : [a, b]→ R2

admits a “re-parametrization” ~γ : [0, `]→ R2 which has a unit
tangent vector everywhere; that is,

|~γ ′(t)| = 1 for all t ∈ (0, `),

where ` denotes the length of the curve.

The (new) curve ~γ(s) induced by ~r is called the re-parametrization
of ~r by arc-length.
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Simple closed curves

A simple closed curve is a curve ~γ in R2 that does not intersect
itself and whose endpoints coincide.

Figure: ~a(t) = 〈cos(t), sin(t)〉 and ~b(t) = 〈cos(t), sin(2t)〉 on [0, 2π]
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Green’s Theorem

Let ~γ be a simple closed curve with the counterclockwise
orientation, and let D denote the bounded region enclosed by ~γ. If
P(x , y) and Q(x , y) are “smooth” functions, then∮

~γ
(P(x , y) dx + Q(x , y) dy) =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy .
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A Consequence of Green’s Theorem

∮
~γ

(P(x , y) dx + Q(x , y) dy) =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy .

Choose P = −y/2 and Q = x/2. Then

∂Q

∂x
− ∂P

∂y
=

1

2
+

1

2
= 1

and so Green’s Theorem becomes∫∫
D

1 dx dy =
1

2

∮
~γ

(−y dx + x dy),

that is,

Area(D) =
1

2

∫ b

a
(−y(t) · x ′(t) + x(t) · y ′(t)) dt.
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So far...

1 Every (regular) curve ~r : [a, b]→ R2 with length ` admits a
“re-parametrization” ~γ : [0, `]→ R2 such that

|~γ ′(t)| = 1 for all t ∈ (0, `).

2 If γ is a simple closed curve, then the bounded region D
enclosed by γ equals

Area(D) =
1

2

∫ `

0
(x(t) · y ′(t)− y(t) · x ′(t)) dt.
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The problem

Question

Among all simple closed curves in the plane with a specified length
`, which one encloses the largest possible area?

Conjecture:

Area(D) ≤ `2

4π
.

This is called the isoperimetric inequality.
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A simplification via re-scaling

For a curve ~γ(t) = 〈x(t), y(t)〉 of length ` which enclosed a
bounded region D, the isoperimetric inequality can be re-stated as

4π Area(D)

`2
≤ 1.

It is important to observe that this quotient depends only on the
“shape” of the curve γ and not on the “size” of the curve.

Consequence: It suffices to establish the inequality for simple
closed curves of length 2π.
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for all simple closed curves γ of length 2π, we have

Area(D) ≤ π.
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A special case of the isoperimetric inequality

Theorem

Given a simple closed curve ~γ : [0, 2π]→ R2 such that

|~γ ′(t)| = 1 for all t ∈ (0, 2π),

the bounded region D enclosed by γ satisfies the inequality

Area(D) ≤ π.

Moreover, equality holds if and only if γ is a circle.

From now on, ~γ is a curve that satisfies the hypothesis of the
theorem. How can we prove this?
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“The shortest path between two truths in the real
domain passes through the complex domain”

–J. Hadamard
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Euler’s formula comes into play...

An important example of a simple closed curve:

~γ(t) = 〈cos t, sin t〉= cos t + i sin t= e it

Other important examples of simple closed curves:for each n ∈ Z,

~γ(t) = 〈cos(nt), sin(nt)〉= cos(nt) + i sin(nt)= e int

Question

Can any γ be generated by the examples above? More concretely,
can we find coefficients an so that

~γ(t) =
∞∑

n=−∞
ane int?
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Some useful formulas

Let g(t) =
∞∑

m=−∞
cme imt . Then the coefficients cn can be

computed from g :

cn =
1

2π

∫ 2π

0
g(t)e−int dt.

Why are these representations useful?
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The area of ~γ revisited

Recall that the area enclosed by ~γ(t) = 〈x(t), y(t)〉 is given by

Area(D) =
1

2

∫ `

0
(x(t) · y ′(t)− y(t) · x ′(t)) dt.

Let

x(t) =
∞∑

m=−∞
ame imt and y(t) =

∞∑
m=−∞

bme imt .

Then

Area(D) = π

∞∑
m=−∞

m · 2 Im(ambm).
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The length of ~γ revisited

Recall that |~γ ′(t)| = 1 for all t ∈ (0, 2π).So,

1

2π

∫ 2π

0
|~γ ′(t)|2 dt = 1

=
1

2π

∫ 2π

0
(x ′(t))2 + (y ′(t))2 dt

=
∞∑

m=−∞
m2|am|2 +

∞∑
m=−∞

m2|bm|2

=
∞∑

m=−∞
m2(|am|2 + |bm|2)

Alberto A. Condori Length, area, and closed curves in the plane



The problem, symmetrization, and conjecture
Length and area

Rescaling of the problem
The special case

Questions and generalizations

Closed curves and periodicity
The estimate

The length of ~γ revisited

Recall that |~γ ′(t)| = 1 for all t ∈ (0, 2π).So,

1

2π

∫ 2π

0
|~γ ′(t)|2 dt = 1

=
1

2π

∫ 2π

0
(x ′(t))2 + (y ′(t))2 dt

=
∞∑

m=−∞
m2|am|2 +

∞∑
m=−∞

m2|bm|2

=
∞∑

m=−∞
m2(|am|2 + |bm|2)

Alberto A. Condori Length, area, and closed curves in the plane



The problem, symmetrization, and conjecture
Length and area

Rescaling of the problem
The special case

Questions and generalizations

Closed curves and periodicity
The estimate

The length of ~γ revisited

Recall that |~γ ′(t)| = 1 for all t ∈ (0, 2π).So,

1

2π

∫ 2π

0
|~γ ′(t)|2 dt = 1

=
1

2π

∫ 2π

0
(x ′(t))2 + (y ′(t))2 dt

=
∞∑

m=−∞
m2|am|2 +

∞∑
m=−∞

m2|bm|2

=
∞∑

m=−∞
m2(|am|2 + |bm|2)

Alberto A. Condori Length, area, and closed curves in the plane



The problem, symmetrization, and conjecture
Length and area

Rescaling of the problem
The special case

Questions and generalizations

Closed curves and periodicity
The estimate

The length of ~γ revisited

Recall that |~γ ′(t)| = 1 for all t ∈ (0, 2π).So,

1

2π

∫ 2π

0
|~γ ′(t)|2 dt = 1

=
1

2π

∫ 2π

0
(x ′(t))2 + (y ′(t))2 dt

=
∞∑

m=−∞
m2|am|2 +

∞∑
m=−∞

m2|bm|2

=
∞∑

m=−∞
m2(|am|2 + |bm|2)

Alberto A. Condori Length, area, and closed curves in the plane



The problem, symmetrization, and conjecture
Length and area

Rescaling of the problem
The special case

Questions and generalizations

Closed curves and periodicity
The estimate

The length of ~γ revisited

Recall that |~γ ′(t)| = 1 for all t ∈ (0, 2π).So,

1

2π

∫ 2π

0
|~γ ′(t)|2 dt = 1

=
1

2π

∫ 2π

0
(x ′(t))2 + (y ′(t))2 dt

=
∞∑

m=−∞
m2|am|2 +

∞∑
m=−∞

m2|bm|2

=
∞∑

m=−∞
m2(|am|2 + |bm|2)

Alberto A. Condori Length, area, and closed curves in the plane



The problem, symmetrization, and conjecture
Length and area

Rescaling of the problem
The special case

Questions and generalizations

Closed curves and periodicity
The estimate

Let’s make some estimates

Area(D) = π

∞∑
m=−∞

m·2 Im(ambm) and
∞∑

m=−∞
m2(|am|2+|bm|2) = 1.

The inequalities

2| Im(ab)| ≤ 2|ab| = 2|a| · |b| ≤ |a|2 + |b|2

imply
∞∑

m=−∞
m · 2 Im(ambm) ≤

∞∑
m=−∞

|m| · (|am|2 + |bm|2)

≤
∞∑

m=−∞
m2 · (|am|2 + |bm|2).

Therefore, Area(D) ≤ π, i.e. the isoperimetric inequality holds.
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Issues with our proof

Our proof raises some questions

1 How should one define “the region enclosed by a curve”?

2 What is area? Once one defines area appropriately, does this
notion agree with the integral formula we used earlier?

3 Can our result be extended to more general types of curves?
That is, can we remove the smoothness assumption?
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Generalized Isoperimetric Inequality

If Ω is any bounded domain in R2 whose boundary ∂Ω has finite
length ` (and not necessarily a simple closed curve), it turns out
that the following inequality holds:

m2(Ω) ≤ `2

4π
.
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d-dimensional Isoperimetric Inequality

Theorem (Federer 1969)

For any set Ω ⊆ Rd whose closure has finite Lebesgue measure,
the following inequality holds

dω
1/d
d md(Ω̄)(d−1)/d ≤M∗(∂Ω),

where M∗(∂Ω) denotes the d − 1 dimensional Minkowski content
of ∂Ω and ωd denotes the volume of the unit ball in Rd .
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An interesting consequence

The d-dimensional isoperimetric inequality is equivalent (for
sufficiently smooth domains) to the Sobolev inequality on Rd :(∫

Rd

|u|
d

d−1 d md

) d−1
d

≤ 1

dω
1/d
d

∫
Rd

|∇u| d md

for all u ∈W 1,1(Rd).
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So, what have we learned today?

1 Translate a qualitative statement into a quantitative one

2 Green’s Theorem is a powerful tool

3 “The shortest path between two truths in the real domain
passes through the complex domain”

4 Translating a quantity from the continuous to the discrete via
trigonometric series

Thank you!
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