Length, area, and closed curves in the plane

Alberto A. Condori

Department of Chemistry and Mathematics Florida Gulf Coast University acondori@fgcu.edu

Friday, April 12, 2013

- The problem and conjecture
- 2 Length and area
- 8 Rescaling of the problem
- The special case
- Questions and generalizations

▲ □ ▶ ▲ □ ▶ ▲

-

1. The problem and conjecture

э

< 日 > < 同 > < 三 > < 三 >

Question

Among all simple closed curves in the plane with a specified length ℓ , which one encloses the largest possible area?

So, after some thought, one obtains a natural candidate:

The circle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

Among all simple closed curves in the plane with a specified length ℓ , which one encloses the largest possible area?

So, after some thought, one obtains a natural candidate:

The circle.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Question

Among all simple closed curves in the plane with a specified length ℓ , which one encloses the largest possible area?

So, after some thought, one obtains a natural candidate:

The circle.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Curves and length Closed curves and area

2. Length and area

*ロト *部ト *注ト *注ト

Curves and length Closed curves and area

Curves in \mathbb{R}^2

A curve \vec{r} in \mathbb{R}^2 is a continuous (vector-valued) function $\vec{r} : [a, b] \to \mathbb{R}^2$.

So, $\vec{r}(t) = \langle x(t), y(t) \rangle$ for $a \le t \le b$, where x and y are continuous real-valued functions on [a, b].

Figure: $\vec{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle$ for $0 \le t \le \pi$

Curves and length Closed curves and area

Image of a curve

Two *distinct* curves may trace out the same path in the plane.

Curves and length Closed curves and area

Length of a curve

If the derivative \vec{r}' exists and is continuous on [a, b], then

$$\ell(\vec{r}) = \int_a^b |\vec{r}'(t)| \, dt.$$

Note:
$$|\vec{v}| = \sqrt{a^2 + b^2}$$
 when $\vec{v} = \langle a, b \rangle$.

Example

If $\vec{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$ for $0 \le t \le 2\pi$, then $\vec{r}'(t) = \langle -3\sin(t), 3\cos(t) \rangle$, $|\vec{r}'(t)| = 3$ and so $\ell(\vec{r}) = 6\pi$.

(日)

Curves and length Closed curves and area

Length of a curve

If the derivative \vec{r}' exists and is continuous on [a, b], then

$$\ell(\vec{r}) = \int_a^b |\vec{r}'(t)| \, dt.$$

Note:
$$|\vec{v}| = \sqrt{a^2 + b^2}$$
 when $\vec{v} = \langle a, b \rangle$.

Example

If $\vec{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$ for $0 \le t \le 2\pi$, then $\vec{r}'(t) = \langle -3\sin(t), 3\cos(t) \rangle$, $|\vec{r}'(t)| = 3$ and so $\ell(\vec{r}) = 6\pi$.

(日)

3

Curves and length Closed curves and area

Length of a curve

If the derivative \vec{r}' exists and is continuous on [a, b], then

$$\ell(\vec{r}) = \int_a^b |\vec{r}'(t)| \, dt.$$

Note:
$$|\vec{v}| = \sqrt{a^2 + b^2}$$
 when $\vec{v} = \langle a, b \rangle$.

Example

If
$$\vec{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$$
 for $0 \le t \le 2\pi$, then
 $\vec{r}'(t) = \langle -3\sin(t), 3\cos(t) \rangle$, $|\vec{r}'(t)| = 3$ and so $\ell(\vec{r}) = 6\pi$.

< 日 > < 同 > < 三 > < 三 >

Curves and length Closed curves and area

Length of a curve

If the derivative \vec{r}' exists and is continuous on [a, b], then

$$\ell(\vec{r}) = \int_a^b |\vec{r}'(t)| \, dt.$$

Note:
$$|\vec{v}| = \sqrt{a^2 + b^2}$$
 when $\vec{v} = \langle a, b \rangle$.

Example

If
$$\vec{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$$
 for $0 \le t \le 2\pi$, then
 $\vec{r}'(t) = \langle -3\sin(t), 3\cos(t) \rangle$, $|\vec{r}'(t)| = 3$ and so $\ell(\vec{r}) = 6\pi$.

< 日 > < 同 > < 三 > < 三 >

Curves and length Closed curves and area

Length of a curve

If the derivative \vec{r}' exists and is continuous on [a, b], then

$$\ell(\vec{r}) = \int_a^b |\vec{r}'(t)| \, dt.$$

Note:
$$|\vec{v}| = \sqrt{a^2 + b^2}$$
 when $\vec{v} = \langle a, b \rangle$.

Example

If
$$\vec{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$$
 for $0 \le t \le 2\pi$, then
 $\vec{r}'(t) = \langle -3\sin(t), 3\cos(t) \rangle$, $|\vec{r}'(t)| = 3$ and so $\ell(\vec{r}) = 6\pi$.

< 日 > < 同 > < 三 > < 三 >

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 1

In particular, if \vec{r}' is continuous and non-zero, then

•
$$\varphi(t) = \int_a^t |\vec{r}'(\tau)| d\tau$$
,

2
$$\varphi'(t) = |\vec{r}'(t)| > 0$$
,

3
$$s = \varphi(t)$$
 is strictly increasing and so has an inverse function $t = \psi(s)$, and finally

• the function $\vec{\gamma}(s) = (\vec{r} \circ \psi)(s)$ has derivative

$$\vec{\gamma}'(s) = \vec{r}'(\psi(s)) \cdot \psi'(s) = \vec{r}'(\psi(s)) \cdot \frac{1}{\varphi'(\psi(s))} = \frac{\vec{r}'(\psi(s))}{|\vec{r}'(\psi(s))|}$$

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 1

In particular, if \vec{r}' is continuous and non-zero, then

2
$$\varphi'(t) = |\vec{r}'(t)| > 0$$
,

 s = φ(t) is strictly increasing and so has an inverse function t = ψ(s), and finally

• the function $\vec{\gamma}(s) = (\vec{r} \circ \psi)(s)$ has derivative

$$\vec{\gamma}'(s) = \vec{r}'(\psi(s)) \cdot \psi'(s) = \vec{r}'(\psi(s)) \cdot \frac{1}{\varphi'(\psi(s))} = \frac{\vec{r}'(\psi(s))}{|\vec{r}'(\psi(s))|}.$$

- 4 同 6 4 日 6 4 日

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 1

In particular, if \vec{r}' is continuous and non-zero, then

2
$$\varphi'(t) = |\vec{r}'(t)| > 0$$
,

 s = φ(t) is strictly increasing and so has an inverse function t = ψ(s), and finally

() the function $ec{\gamma}(s) = (ec{r} \circ \psi)(s)$ has derivative

$$\vec{\gamma}'(s) = \vec{r}'(\psi(s)) \cdot \psi'(s) = \vec{r}'(\psi(s)) \cdot \frac{1}{\varphi'(\psi(s))} = \frac{\vec{r}'(\psi(s))}{|\vec{r}'(\psi(s))|}$$

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 1

In particular, if \vec{r}' is continuous and non-zero, then

•
$$\varphi(t) = \int_a^L |\vec{r}'(\tau)| d\tau$$
,

2
$$\varphi'(t) = |\vec{r}'(t)| > 0$$
,

- s = φ(t) is strictly increasing and so has an inverse function t = ψ(s), and finally
- the function $\vec{\gamma}(s) = (\vec{r} \circ \psi)(s)$ has derivative

$$\vec{\gamma}'(s) = \vec{r}'(\psi(s)) \cdot \psi'(s) = \vec{r}'(\psi(s)) \cdot \frac{1}{\varphi'(\psi(s))} = \frac{\vec{r}'(\psi(s))}{|\vec{r}'(\psi(s))|}$$

(日) (同) (三) (三)

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 1

In particular, if \vec{r}' is continuous and non-zero, then

2
$$\varphi'(t) = |\vec{r}'(t)| > 0$$
,

 s = φ(t) is strictly increasing and so has an inverse function t = ψ(s), and finally

• the function
$$\vec{\gamma}(s) = (\vec{r} \circ \psi)(s)$$
 has derivative
 $\vec{\gamma}'(s) = \vec{r}'(\psi(s)) \cdot \psi'(s) = \vec{r}'(\psi(s)) \cdot \frac{1}{\varphi'(\psi(s))} = \frac{\vec{r}'(\psi(s))}{|\vec{r}'(\psi(s))|}$

(日) (同) (三) (三)

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 1

In particular, if \vec{r}' is continuous and non-zero, then

2
$$\varphi'(t) = |\vec{r}'(t)| > 0$$
,

- s = φ(t) is strictly increasing and so has an inverse function t = ψ(s), and finally
- the function $\vec{\gamma}(s) = (\vec{r} \circ \psi)(s)$ has derivative $\vec{\gamma}'(s) = \vec{r}'(\psi(s)) \cdot \psi'(s) = \vec{r}'(\psi(s)) \cdot \frac{1}{\varphi'(\psi(s))} = \frac{\vec{r}'(\psi(s))}{|\vec{r}'(\psi(s))|}.$

・ロト ・同ト ・ヨト ・ヨト

Curves and length Closed curves and area

Re-parametrization by arc-length - Part 2

<u>Conclusion</u>: If \vec{r}' is continuous and non-zero, then $\vec{r} : [a, b] \to \mathbb{R}^2$ admits a "re-parametrization" $\vec{\gamma} : [0, \ell] \to \mathbb{R}^2$ which has a unit tangent vector everywhere; that is,

$$|ec{\gamma}\,'(t)|=1$$
 for all $t\in(0,\ell),$

where ℓ denotes the length of the curve.

The (new) curve $\vec{\gamma}(s)$ induced by \vec{r} is called the *re-parametrization* of \vec{r} by arc-length.

- 4 回 ト 4 ヨト 4 ヨト

Curves and length Closed curves and area

Simple closed curves

A simple closed curve is a curve $\vec{\gamma}$ in \mathbb{R}^2 that does not intersect itself and whose endpoints coincide.

- 4 同 🕨 - 4 目 🕨 - 4 目

Figure: $\vec{a}(t) = \langle \cos(t), \sin(t) \rangle$ and $\vec{b}(t) = \langle \cos(t), \sin(2t) \rangle$ on $[0, 2\pi]$

Curves and length Closed curves and area

Green's Theorem

Let $\vec{\gamma}$ be a simple closed curve with the counterclockwise orientation, and let D denote the bounded region enclosed by $\vec{\gamma}$. If P(x, y) and Q(x, y) are "smooth" functions, then

$$\oint_{\vec{\gamma}} (P(x,y) \, dx + Q(x,y) \, dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.$$

< 日 > < 同 > < 三 > < 三 >

Curves and length Closed curves and area

A Consequence of Green's Theorem

$$\oint_{\vec{\gamma}} (P(x,y) \, dx + Q(x,y) \, dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.$$

Choose P = -y/2 and Q = x/2. Then

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{1}{2} + \frac{1}{2} = 1$$

and so Green's Theorem becomes

$$\iint_D 1\,dx\,dy = \frac{1}{2}\oint_{\vec{\gamma}} (-y\,dx + x\,dy),$$

that is,

Area
$$(D) = \frac{1}{2} \int_{a}^{b} (-y(t) \cdot x'(t) + x(t) \cdot y'(t)) dt$$

< 日 > < 同 > < 三 > < 三 >

Curves and length Closed curves and area

A Consequence of Green's Theorem

$$\oint_{\vec{\gamma}} (P(x,y) \, dx + Q(x,y) \, dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.$$

Choose P = -y/2 and Q = x/2. Then

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{1}{2} + \frac{1}{2} = 1$$

and so Green's Theorem becomes

$$\iint_D 1\,dx\,dy = \frac{1}{2}\oint_{\vec{\gamma}} (-y\,dx + x\,dy),$$

that is,

Area
$$(D) = \frac{1}{2} \int_{a}^{b} (-y(t) \cdot x'(t) + x(t) \cdot y'(t)) dt$$

- 4 同 6 4 日 6 4 日 6

Curves and length Closed curves and area

A Consequence of Green's Theorem

$$\oint_{\vec{\gamma}} (P(x,y) \, dx + Q(x,y) \, dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.$$

Choose P = -y/2 and Q = x/2. Then

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{1}{2} + \frac{1}{2} = 1$$

and so Green's Theorem becomes

$$\iint_D 1\,dx\,dy = \frac{1}{2}\oint_{\vec{\gamma}} (-y\,dx + x\,dy),$$

that is,

$$\operatorname{Area}(D) = \frac{1}{2} \int_{a}^{b} (-y(t) \cdot x'(t) + x(t) \cdot y'(t)) dt.$$

- 4 同 6 4 日 6 4 日 6

Curves and length Closed curves and area

So far...

• Every (regular) curve $\vec{r} : [a, b] \to \mathbb{R}^2$ with length ℓ admits a "re-parametrization" $\vec{\gamma} : [0, \ell] \to \mathbb{R}^2$ such that

$$|ec{\gamma}\,'(t)|=1$$
 for all $t\in(0,\ell).$

(2) If γ is a simple closed curve, then the bounded region D enclosed by γ equals

$$\operatorname{Area}(D) = \frac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

< 日 > < 同 > < 三 > < 三 >

Curves and length Closed curves and area

So far...

• Every (regular) curve $\vec{r} : [a, b] \to \mathbb{R}^2$ with length ℓ admits a "re-parametrization" $\vec{\gamma} : [0, \ell] \to \mathbb{R}^2$ such that

$$|ec{\gamma}'(t)| = 1$$
 for all $t \in (0, \ell)$.

2 If γ is a simple closed curve, then the bounded region D enclosed by γ equals

$$\operatorname{Area}(D) = \frac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

イロト イボト イヨト イヨト

3. Rescaling of the problem

э

(日) (同) (三) (三)

The problem

Question

Among all simple closed curves in the plane with a specified length ℓ , which one encloses the largest possible area?

Conjecture:

This is called the *isoperimetric inequality*.

・ 一 ・ ・ ・ ・ ・ ・

The problem

Question

Among all simple closed curves in the plane with a specified length ℓ , which one encloses the largest possible area?

Conjecture:

$$Area(D) \leq rac{\ell^2}{4\pi}.$$

This is called the *isoperimetric inequality*.

A simplification via re-scaling

For a curve $\vec{\gamma}(t) = \langle x(t), y(t) \rangle$ of length ℓ which enclosed a bounded region *D*, the isoperimetric inequality can be re-stated as

$$\frac{4\pi\operatorname{Area}(D)}{\ell^2} \leq 1.$$

It is important to observe that this quotient depends only on the "shape" of the curve γ and not on the "size" of the curve.

<u>Consequence</u>: It suffices to establish the inequality for simple closed curves of length 2π .

A simplification via re-scaling

For a curve $\vec{\gamma}(t) = \langle x(t), y(t) \rangle$ of length ℓ which enclosed a bounded region *D*, the isoperimetric inequality can be re-stated as

$$\frac{4\pi\operatorname{Area}(D)}{\ell^2} \leq 1.$$

It is important to observe that this quotient depends only on the "shape" of the curve γ and not on the "size" of the curve.

<u>Consequence</u>: It suffices to establish the inequality for simple closed curves of length 2π .

- 同 ト - ヨ ト - - ヨ ト

So far...

- Every (regular) curve $\vec{r} : [a, b] \to \mathbb{R}^2$ with length ℓ admits a "re-parametrization" $\vec{\gamma} : [0, \ell] \to \mathbb{R}^2$ such that $|\vec{\gamma}'(t)| = 1$ for all $t \in (0, \ell)$.
- (2) If γ is a simple closed curve, then the bounded region D enclosed by γ equals

$$\operatorname{Area}(D) = \frac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

(a) To prove the isoperimetric inequality, it suffices to prove that for all simple closed curves γ of length 2π , we have

Area
$$(D) \leq \pi$$
.

(日) (同) (三) (三)

So far...

- Every (regular) curve $\vec{r} : [a, b] \to \mathbb{R}^2$ with length ℓ admits a "re-parametrization" $\vec{\gamma} : [0, \ell] \to \mathbb{R}^2$ such that $|\vec{\gamma}'(t)| = 1$ for all $t \in (0, \ell)$.
- If γ is a simple closed curve, then the bounded region D enclosed by γ equals

$$\mathsf{Area}(D) = rac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

To prove the isoperimetric inequality, it suffices to prove that for all simple closed curves γ of length 2π , we have

Area
$$(D) \leq \pi$$
.

(日) (同) (三) (三)

So far...

- Every (regular) curve $\vec{r} : [a, b] \to \mathbb{R}^2$ with length ℓ admits a "re-parametrization" $\vec{\gamma} : [0, \ell] \to \mathbb{R}^2$ such that $|\vec{\gamma}'(t)| = 1$ for all $t \in (0, \ell)$.
- 3 If γ is a simple closed curve, then the bounded region D enclosed by γ equals

$$\mathsf{Area}(D) = rac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

• To prove the isoperimetric inequality, it suffices to prove that for all simple closed curves γ of length 2π , we have

Area
$$(D) \leq \pi$$
.

イロト イポト イラト イラト
Closed curves and periodicity The estimate

4. The special case

イロン イロン イヨン イヨン

Closed curves and periodicity The estimate

A special case of the isoperimetric inequality

Theorem

Given a simple closed curve $\vec{\gamma}: [0,2\pi] \to \mathbb{R}^2$ such that

$$|ec{\gamma}^{\,\prime}(t)|=1$$
 for all $t\in(0,2\pi),$

the bounded region D enclosed by γ satisfies the inequality

Area(D) $\leq \pi$.

Moreover, equality holds if and only if γ is a circle.

From now on, $\vec{\gamma}$ is a curve that satisfies the hypothesis of the theorem. How can we prove this?

Closed curves and periodicity The estimate

A special case of the isoperimetric inequality

Theorem

Given a simple closed curve $\vec{\gamma}: [0,2\pi] \to \mathbb{R}^2$ such that

$$|ec{\gamma}^{\,\prime}(t)|=1$$
 for all $t\in(0,2\pi),$

the bounded region D enclosed by γ satisfies the inequality

Area(D) $\leq \pi$.

Moreover, equality holds if and only if γ is a circle.

From now on, $\vec{\gamma}$ is a curve that satisfies the hypothesis of the theorem. How can we prove this?

Closed curves and periodicity The estimate

A special case of the isoperimetric inequality

Theorem

Given a simple closed curve $\vec{\gamma}: [0,2\pi] \to \mathbb{R}^2$ such that

$$|ec{\gamma}^{\,\prime}(t)|=1$$
 for all $t\in(0,2\pi),$

the bounded region D enclosed by γ satisfies the inequality

Area(D) $\leq \pi$.

Moreover, equality holds if and only if γ is a circle.

From now on, $\vec{\gamma}$ is a curve that satisfies the hypothesis of the theorem. How can we prove this?

Closed curves and periodicity The estimate

"The shortest path between two truths in the real domain passes through the complex domain"

-J. Hadamard

Closed curves and periodicity The estimate

Euler's formula comes into play ...

An important example of a simple closed curve:

 $ec{\gamma}(t) = \langle \cos t, \sin t
angle = \cos t + i \sin t = e^{it}$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

 $\vec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Euler's formula comes into play ...

An important example of a simple closed curve:

 $ec{\gamma}(t) = \langle \cos t, \sin t \rangle = \cos t + i \sin t = e^{it}$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

$$\vec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$ec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}?$$

Closed curves and periodicity The estimate

Euler's formula comes into play...

An important example of a simple closed curve:

 $ec{\gamma}(t) = \langle \cos t, \sin t
angle = \cos t + i \sin t = e^{it}$

Other important examples of simple closed curves:for each $n \in \mathbb{Z}$,

 $ec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Euler's formula comes into play...

An important example of a simple closed curve:

$$ec{\gamma}(t) = \langle \cos t, \sin t
angle = \cos t + i \sin t = e^{it}$$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

 $\vec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Euler's formula comes into play...

An important example of a simple closed curve:

$$ec{\gamma}(t) = \langle \cos t, \sin t
angle = \cos t + i \sin t = e^{it}$$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

$$ec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Euler's formula comes into play...

An important example of a simple closed curve:

$$\vec{\gamma}(t) = \langle \cos t, \sin t \rangle = \cos t + i \sin t = e^{it}$$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

$$ec{\gamma}(t) = \langle \cos(nt), \sin(nt)
angle = \cos(nt) + i \sin(nt) = e^{int}$$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Euler's formula comes into play...

An important example of a simple closed curve:

$$\vec{\gamma}(t) = \langle \cos t, \sin t \rangle = \cos t + i \sin t = e^{it}$$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

$$\vec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Euler's formula comes into play...

An important example of a simple closed curve:

$$\vec{\gamma}(t) = \langle \cos t, \sin t \rangle = \cos t + i \sin t = e^{it}$$

Other important examples of simple closed curves: for each $n \in \mathbb{Z}$,

$$\vec{\gamma}(t) = \langle \cos(nt), \sin(nt) \rangle = \cos(nt) + i \sin(nt) = e^{int}$$

Question

Can any γ be generated by the examples above? More concretely, can we find coefficients a_n so that

$$\vec{\gamma}(t) = \sum_{n=-\infty}^{\infty} a_n e^{int}$$
?

Closed curves and periodicity The estimate

Some useful formulas

Let
$$g(t) = \sum_{m=-\infty}^{\infty} c_m e^{imt}$$
. Then the coefficients c_n can be computed from g :

$$c_n=\frac{1}{2\pi}\int_0^{2\pi}g(t)e^{-int}\,dt.$$

Why are these representations useful?

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The area of $\vec{\gamma}$ revisited

Recall that the area enclosed by $\vec{\gamma}(t) = \langle x(t), y(t) \rangle$ is given by

$$\operatorname{Area}(D) = \frac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

Let

Then

Area
$$(D) = \pi \sum_{m=-\infty}^{\infty} m \cdot 2 \ln(a_m \overline{b}_m).$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The area of $\vec{\gamma}$ revisited

Recall that the area enclosed by $\vec{\gamma}(t) = \langle x(t), y(t) \rangle$ is given by

$$\operatorname{Area}(D) = \frac{1}{2} \int_0^\ell (x(t) \cdot y'(t) - y(t) \cdot x'(t)) \, dt.$$

Let

$$x(t) = \sum_{m=-\infty}^{\infty} a_m e^{imt}$$
 and $y(t) = \sum_{m=-\infty}^{\infty} b_m e^{imt}$.

Then

Area
$$(D) = \pi \sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m).$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The length of $\vec{\gamma}$ revisited

Recall that $|ec{\gamma}'(t)| = 1$ for all $t \in (0, 2\pi)$.So,

$$\frac{1}{2\pi} \int_0^{2\pi} |\vec{\gamma}'(t)|^2 \, dt = 1$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (x'(t))^2 + (y'(t))^2 dt$$

$$=\sum_{m=-\infty}^{\infty}m^2|a_m|^2+\sum_{m=-\infty}^{\infty}m^2|b_m|^2$$

$$= \sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2)$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The length of $\vec{\gamma}$ revisited

Recall that $|ec{\gamma}'(t)| = 1$ for all $t \in (0, 2\pi)$.So,

$$\frac{1}{2\pi}\int_0^{2\pi} |\vec{\gamma}'(t)|^2 \, dt = 1$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (x'(t))^2 + (y'(t))^2 dt$$

$$=\sum_{m=-\infty}^{\infty}m^2|a_m|^2+\sum_{m=-\infty}^{\infty}m^2|b_m|^2$$

$$= \sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2)$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The length of $\vec{\gamma}$ revisited

Recall that $|ec{\gamma}\,'(t)|=1$ for all $t\in(0,2\pi).$ So,

$$\frac{1}{2\pi}\int_0^{2\pi} |\vec{\gamma}'(t)|^2 \, dt = 1$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (x'(t))^2 + (y'(t))^2 dt$$

$$=\sum_{m=-\infty}^{\infty}m^2|a_m|^2+\sum_{m=-\infty}^{\infty}m^2|b_m|^2$$

$$= \sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2)$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The length of $\vec{\gamma}$ revisited

Recall that $|ec{\gamma}\,'(t)|=1$ for all $t\in(0,2\pi).$ So,

$$\frac{1}{2\pi}\int_0^{2\pi} |\vec{\gamma}'(t)|^2 \, dt = 1$$

$$=\frac{1}{2\pi}\int_0^{2\pi}(x'(t))^2+(y'(t))^2\,dt$$

$$=\sum_{m=-\infty}^{\infty}m^2|a_m|^2+\sum_{m=-\infty}^{\infty}m^2|b_m|^2$$

$$= \sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2)$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

The length of $\vec{\gamma}$ revisited

Recall that $|ec{\gamma}\,'(t)|=1$ for all $t\in(0,2\pi).$ So,

$$rac{1}{2\pi}\int_{0}^{2\pi}|ec{\gamma}'(t)|^{2}\,dt=1$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (x'(t))^2 + (y'(t))^2 dt$$

$$=\sum_{m=-\infty}^{\infty}m^2|a_m|^2+\sum_{m=-\infty}^{\infty}m^2|b_m|^2$$

$$=\sum_{m=-\infty}^{\infty}m^2(|a_m|^2+|b_m|^2)$$

(日) (同) (三) (三)

Closed curves and periodicity The estimate

Let's make some estimates

$$\operatorname{Area}(D) = \pi \sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m) \quad \text{and} \quad \sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2) = 1.$$

The inequalities

 $2|\operatorname{Im}(a\overline{b})| \le 2|a\overline{b}| = 2|a| \cdot |b| \le |a|^2 + |b|^2$

imply

$$\sum_{m=-\infty}^{\infty} m \cdot 2 \ln(a_m \overline{b}_m) \le \sum_{m=-\infty}^{\infty} |m| \cdot (|a_m|^2 + |b_m|^2)$$
$$\le \sum_{m=-\infty}^{\infty} m^2 \cdot (|a_m|^2 + |b_m|^2).$$

Therefore, Area $(D) \leq \pi$, i.e. the isoperimetric inequality holds.

Closed curves and periodicity The estimate

Let's make some estimates

Area
$$(D) = \pi \sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m)$$
 and $\sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2) = 1.$

The inequalities

$$2|\operatorname{Im}(a\overline{b})| \le 2|a\overline{b}| = 2|a| \cdot |b| \le |a|^2 + |b|^2$$

imply

$$\sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m) \leq \sum_{m=-\infty}^{\infty} |m| \cdot (|a_m|^2 + |b_m|^2)$$
$$\leq \sum_{m=-\infty}^{\infty} m^2 \cdot (|a_m|^2 + |b_m|^2).$$

Therefore, Area $(D) \leq \pi$, i.e. the isoperimetric inequality holds.

Closed curves and periodicity The estimate

Let's make some estimates

Area
$$(D) = \pi \sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m)$$
 and $\sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2) = 1.$

The inequalities

$$2|\operatorname{Im}(a\overline{b})| \le 2|a\overline{b}| = 2|a| \cdot |b| \le |a|^2 + |b|^2$$

imply

$$\sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m) \leq \sum_{m=-\infty}^{\infty} |m| \cdot (|a_m|^2 + |b_m|^2)$$
$$\leq \sum_{m=-\infty}^{\infty} m^2 \cdot (|a_m|^2 + |b_m|^2).$$

Therefore, Area $(D) \leq \pi$, i.e. the isoperimetric inequality holds.

Closed curves and periodicity The estimate

Let's make some estimates

Area
$$(D) = \pi \sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m)$$
 and $\sum_{m=-\infty}^{\infty} m^2 (|a_m|^2 + |b_m|^2) = 1.$

The inequalities

$$2|\operatorname{Im}(a\overline{b})| \le 2|a\overline{b}| = 2|a| \cdot |b| \le |a|^2 + |b|^2$$

imply

$$\sum_{m=-\infty}^{\infty} m \cdot 2 \operatorname{Im}(a_m \overline{b}_m) \leq \sum_{m=-\infty}^{\infty} |m| \cdot (|a_m|^2 + |b_m|^2)$$
$$\leq \sum_{m=-\infty}^{\infty} m^2 \cdot (|a_m|^2 + |b_m|^2).$$

Therefore, Area $(D) \leq \pi$, i.e. the isoperimetric inequality holds.

ъ

5. Questions and generalizations

(日) (同) (三) (三)

Issues with our proof

Our proof raises some questions

- I How should one define "the region enclosed by a curve"?
- What is area? Once one defines area appropriately, does this notion agree with the integral formula we used earlier?
- Or an our result be extended to more general types of curves? That is, can we remove the smoothness assumption?

- 4 同 🕨 - 4 目 🕨 - 4 目

Issues with our proof

Our proof raises some questions

- I How should one define "the region enclosed by a curve"?
- What is area? Once one defines area appropriately, does this notion agree with the integral formula we used earlier?
- Our can our result be extended to more general types of curves? That is, can we remove the smoothness assumption?

Issues with our proof

Our proof raises some questions

- I How should one define "the region enclosed by a curve"?
- What is area? Once one defines area appropriately, does this notion agree with the integral formula we used earlier?
- S Can our result be extended to more general types of curves? That is, can we remove the smoothness assumption?

- 4 周 ト 4 戸 ト 4 戸 ト

Issues with our proof

Our proof raises some questions

- I How should one define "the region enclosed by a curve"?
- What is area? Once one defines area appropriately, does this notion agree with the integral formula we used earlier?
- S Can our result be extended to more general types of curves? That is, can we remove the smoothness assumption?

- 4 周 ト 4 戸 ト 4 戸 ト

Generalized Isoperimetric Inequality

If Ω is any bounded domain in \mathbb{R}^2 whose boundary $\partial \Omega$ has finite length ℓ (and not necessarily a simple closed curve), it turns out that the following inequality holds:

$$\mathbf{m}_2(\Omega) \leq rac{\ell^2}{4\pi}.$$

d-dimensional Isoperimetric Inequality

Theorem (Federer 1969)

For any set $\Omega \subseteq \mathbb{R}^d$ whose closure has finite Lebesgue measure, the following inequality holds

$$d\omega_d^{1/d} \mathbf{m}_d(\bar{\Omega})^{(d-1)/d} \leq \mathcal{M}_*(\partial\Omega),$$

where $\mathcal{M}_*(\partial\Omega)$ denotes the d-1 dimensional Minkowski content of $\partial\Omega$ and ω_d denotes the volume of the unit ball in \mathbb{R}^d .

(日) (同) (三) (三)

An interesting consequence

The *d*-dimensional isoperimetric inequality is equivalent (for sufficiently smooth domains) to the *Sobolev inequality* on \mathbb{R}^d :

$$\left(\int_{\mathbb{R}^d} |u|^{\frac{d}{d-1}} \, d\, \mathbf{m}_d\right)^{\frac{d-1}{d}} \leq \frac{1}{d\omega_d^{1/d}} \int_{\mathbb{R}^d} |\nabla u| \, d\, \mathbf{m}_d$$

for all $u \in W^{1,1}(\mathbb{R}^d)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

So, what have we learned today?

Translate a qualitative statement into a quantitative one

- ③ Green's Theorem is a powerful tool
- The shortest path between two truths in the real domain passes through the complex domain"
- Translating a quantity from the continuous to the discrete via trigonometric series

Thank you!

・ 同 ト ・ ヨ ト ・ ヨ

So, what have we learned today?

- Translate a qualitative statement into a quantitative one
- I Green's Theorem is a powerful tool
- The shortest path between two truths in the real domain passes through the complex domain"
- Translating a quantity from the continuous to the discrete via trigonometric series

Thank you!

・ 同 ト ・ ヨ ト ・ ヨ

So, what have we learned today?

- Translate a qualitative statement into a quantitative one
- In Green's Theorem is a powerful tool
- The shortest path between two truths in the real domain passes through the complex domain"
- Translating a quantity from the continuous to the discrete via trigonometric series

Thank you!

- 4 同 ト 4 ヨ ト 4 ヨ
The problem, symmetrization, and conjecture Length and area Rescaling of the problem The special case Questions and generalizations

So, what have we learned today?

- Translate a qualitative statement into a quantitative one
- In Green's Theorem is a powerful tool
- The shortest path between two truths in the real domain passes through the complex domain"
- Translating a quantity from the continuous to the discrete via trigonometric series

Thank you!

伺下 イヨト イヨト

The problem, symmetrization, and conjecture Length and area Rescaling of the problem The special case Questions and generalizations

So, what have we learned today?

- Translate a qualitative statement into a quantitative one
- In the original of the orig
- The shortest path between two truths in the real domain passes through the complex domain"
- Translating a quantity from the continuous to the discrete via trigonometric series

Thank you!

- 同 ト - ヨ ト - - ヨ ト