Cyclicity in Dirichlet-type spaces and Optimal Polynomials

Alberto A. Condori

Department of Mathematics Florida Gulf Coast University acondori@fgcu.edu

January 13, 2015

Alberto A. Condori Cyclicity in Dirichlet-type spaces and Optimal Polynomials

A 3 b

This talk is based on the paper

Cyclicity in Dirichlet-type spaces and extremal polynomials, J. Anal. Math. (to appear)

by C. Bénéteau, A.A. Condori, C. Liaw, D. Seco, and A.A. Sola. (BCLSS).

The goals for this talk:

- O Describe what is done in the paper above (more or less)
- **②** Mention what results depend on the nature of the space D_{lpha}

Let Ω be a set. We say \mathcal{H} is a **reproducing kernel Hilbert space** (RKHS) on Ω if

- \mathcal{H} is a vector space consisting of functions $f: \Omega \to \mathbb{C}$,
- **2** \mathcal{H} is a Hilbert space w.r.t. $\langle \cdot, \cdot \rangle$,
- every point-evaluation functional (i.e. Φ_λ : H → C is defined by Φ_λ(f) = f(λ) for f ∈ H) is continuous.

In particular, for every $\lambda \in \Omega$, there is a unique vector $k_{\lambda} \in \mathcal{H}$ such that $f(\lambda) = \langle f, k_{\lambda} \rangle$ for all $f \in \mathcal{H}$.

We say ${\mathcal H}$ is a Hilbert space of analytic functions on Ω if

- ${\it @}~{\cal H}$ contains all analytic polynomials as a dense subset, and
- **3** $f \in \mathcal{H}$ implies $zf \in \mathcal{H}$.

The Weighted Hardy Space

Given $\beta = (\beta_n)_{n \ge 0}$ with $\beta_n > 0$, H_{β}^2 consists of formal power series $f = \sum_{n \ge 0} a_n z^n$ such that $||f||_{\beta}^2 = \sum_{n \ge 0} \beta_n^2 |a_n|^2 < \infty$. Thus,

• H_{β}^2 is a Hilbert space w.r.t. $\langle f, g \rangle = \sum_{n \ge 0} \beta_n^2 a_n \overline{b_n}$.

Seach f ∈ H²_β has radius of convergence at least $R_{\beta} \stackrel{\text{def}}{=} \liminf_{n \to \infty} \beta_n^{-1/n}, \text{ i.e. } f \text{ is analytic on the disk of radius } R_{\beta}.$

3 H_{β}^2 is a RKHS on $\Omega = \{\zeta : |\zeta| < R_{\beta}\}$; in fact, $k_{\lambda} = \sum_{n \ge 0} \frac{\lambda^n}{\beta_n^2} z^n$

is the reproducing kernel at λ .

The Dirichlet-type spaces: $D_lpha=H^2_eta,\ eta_n=\sqrt{(n+1)^lpha}$

 $D_{-1} = B =$ Bergman, $D_0 = H^2 =$ Hardy, and $D_1 = D =$ Dirichlet.

-

Cyclicity

Let \mathcal{H} be a Hilbert space of analytic functions on Ω . $f \in \mathcal{H}$ is called **cyclic** if $[f] = \mathcal{H}$, where

$$[f] \stackrel{\text{def}}{=} \overline{\text{span}} \{ z^k f : k \ge 0 \}.$$

Basic Observations:

- O The constant function 1 is cyclic.
- **2** $f \in \mathcal{H}$ cyclic implies

 $f(\zeta) \neq 0$ for all $\zeta \in \Omega$.

- (Kopp 1969) D_α is an algebra when α > 1. In particular, cyclic vectors are the invertible elements f in D_α, i.e. f has no zeros in the closed unit disk.
- f = 1 z is cyclic in D even though it has a zero on \mathbb{T} .

(Brown-Shields 1984) f is cyclic in \mathcal{H} if and only if $1 \in [f]$, i.e. $\exists (p_n)_{n \geq 0}$ of polynomials such that

$$\|1 - p_n f\| \to 0 \text{ as } n \to \infty.$$
 (1)

This leads one¹ to ask:

- If f is cyclic, can we produce $(p_n)_{n\geq 0}$ such that (1) holds?
- 2 Can we estimate the rate of decay of the norms in (1)?
- What can we say about the approximating polynomials?

¹Actually, five: C. Bénéteau, A.A. Condori, C. Liaw, D. Seco, and A.A. Sola and

We say that p_n^* is the **optimal approximant of order** *n* if

$$\|1-p_n^*f\|=\mathsf{dist}(1,f\mathcal{P}_n),$$

where \mathcal{P}_n denotes the set of polynomials of degree at most n.

In particular, f is cyclic if and only if the sequence $(p_n^*)_{n\geq 1}$ satisfies $||1 - p_n^*f|| \to 0$ as $n \to \infty$.

Estimates

When f = 1 - z and $\mathcal{H} = D_{\alpha}$ with the "integral norm," BCLSS obtained

1 a formula for p_n^* (up to a constant factor),

Question: Can one obtain exact formulas?

Theorem

If $\lambda \neq 0$ and $f = \lambda - z$, then

$$p_n^* = \sum_{\ell=0}^n \left(1 - rac{H_\ell^{(\lambda)}}{H_{n+1}^{(\lambda)}}
ight) rac{1}{\lambda^{\ell+1}} z^\ell$$

and

$$\mathsf{dist}_{D_lpha}(1, f\mathcal{P}_n) = rac{1}{\sqrt{\mathcal{H}_{n+1}^{(\lambda)}}},$$

where

$$H_\ell^{(\lambda)} = \sum_{k=0}^\ell rac{|\lambda|^{2k}}{(k+1)^lpha}.$$

Corollary

f = 1 - z is cyclic in D_{α} precisely when $\alpha \leq 1$.

How about other Hilbert spaces of analytic functions?

Alberto A. Condori Cyclicity in Dirichlet-type spaces and Optimal Polynomials

Recall that if f = 1 - z and $\mathcal{H} = D_{\alpha}$, we have

• dist
$$^2_{D_{\alpha}}(1,(1-z)\mathcal{P}_n) \approx \frac{1}{(n+1)^{1-\alpha}}$$
 when $\alpha < 1$ and

2 dist_D²
$$(1, (1-z)\mathcal{P}_n) \approx \frac{1}{\log(n+1)}$$
 when $\alpha = 1$.

Question: Can one get similar estimates for other functions?

Theorem (BCLSS)

Suppose f has zeros in $\mathbb{C}\setminus\mathbb{D}$ and at least one zero on $\mathbb{T}.$ Then the same estimates hold if

- f is a polynomial, or
- f admits analytic continuation to the closed disk.

We asked:

- If f is cyclic, can we produce $(p_n)_{n\geq 0}$ such that (1) holds?
- 2 Can we estimate the rate of decay of the norms in (1)?
- What can we say about the approximating polynomials?

In a Hilbert space of analytic functions \mathcal{H} on \mathbb{D} , if f is cyclic, then

$$\lim_{n\to\infty}p_n^*(\zeta)f(\zeta)=1 \text{ for } \zeta\in\mathbb{D}.$$

In particular, if f has a zero on \mathbb{T} , then 1/f has a power series with radius of convergence 1 and so (Jentzsch's theorem) every point of \mathbb{T} is a limit point of the zeros of Taylor polynomials of 1/f.

Question: Does the same occur for p_n^* ? Can we find an asymptotic distribution of the zeros?

Even if f is not cyclic, one can show that there is a function $f^* \in \mathcal{H}$ such that

$$\lim_{n\to\infty}p_n^*(\zeta)f(\zeta)=f^*(\zeta) \text{ for } \zeta\in\mathbb{D}.$$

For instance, if $\mathcal{H} = H^2$ and $f = \lambda - z$, then $[f] = b_{\lambda}H^2$ and

$$f^* = ar{\lambda} b_\lambda$$
 where $b_\lambda = rac{\lambda-z}{1-ar{\lambda}z}$

Thus, it is possible that the polynomials p_n^* can be used to study invariant subspaces and factorizations in spaces of analytic functions.

Well, this requires further investigation!

Thank you!

Alberto A. Condori Cyclicity in Dirichlet-type spaces and Optimal Polynomials