Maximum principles for matrix-valued functions Joint Mathematical Meetings - MAA General Session on Analysis

Alberto A. Condori

Florida Gulf Coast University, Fort Myers, FL

January 16, 2019

Alberto A. Condori (FGCU)

Outline

- 2 The need for matrix-valued functions
- 3 Maximum principles for matrix-valued functions
- 4 Return to resolvents and matrix exponentials

Maximum Modulus Principle (MMP)

The MMP is key in Complex Analysis; e.g. it implies

- the fundamental theorem of algebra,
- 2 the open mapping theorem,
- 3 Schwarz's lemma, etc.

Roughly, MMP states that analytic functions attain their maximum modulus on the boundary. More precisely:

Theorem (MMP)

If f non-constant and analytic on region Ω , then |f(z)| cannot have a maximum in Ω .

This theorem is about *scalar-valued* functions: $f : \Omega \to \mathbb{C}$. Throughout, Ω denotes a *region* of \mathbb{C} .

3

< 回 ト < 三 ト < 三 ト

Applications require *matrix-valued* functions: $F : \Omega \to \mathbb{M}_n$

- Differential Equations: growth/decay of the solutions x(t) = exp(tA)x₀ to x(t) = A ⋅ x(t) is controlled by the operator norm of the matrix-valued function t → exp(tA).
- Linear Algebra: Given A ∈ M_n, λ ∈ σ(A) if and only if the *resolvent* z ↦ (A zI)⁻¹ has a singularity at λ, i.e. A λI is not invertible. σ(A) is *insufficient* for the analysis of a matrix, some focus on studying instead the operator norm of z ↦ (A zI)⁻¹, e.g. see [1].
- Mathematical Physics/Harmonic Analysis of Operators: problems concerning spectral properties of an operator are often solved through the consideration of the "characteristic function."

Brooks, C. D., Condori, A. A. (2018). A resolvent criterion for normality. *Amer. Math. Monthly.* 125(2): 149–156.

イロト 不得下 イヨト イヨト 二日

Is there a maximum-norm principle?

Theorem (Maximum Norm Principle (see [1]))

Let $F : \Omega \to \mathbb{M}_n$ be analytic. If ||F(z)|| attains its maximum in Ω , then ||F(z)|| is constant on Ω .

Theorem (Maximum Frobenius-Norm Principle)

Let $F : \Omega \to \mathbb{M}_n$ be analytic. If $||F(z)||_{\mathcal{F}}$ assumes its maximum at some $z_0 \in \Omega$, then $F(z) = F(z_0)$ for all $z \in \Omega$.

Throughout,
$$\|A\| = \max_{|v|=1} |Av|$$
 and $\|A\|_{\mathcal{F}} = \sqrt{\sum_{i,j} |a_{i,j}|^2}$ denote the

operator and Frobenius norms of $A \in \mathbb{M}_n$.

イロト 不得下 イヨト イヨト 二日

Example

Question: What is an example of a non-constant matrix-valued function $F : \Omega \to \mathbb{C}$ so that ||F(z)|| attains a maximum in Ω ?

The operator norm of the matrix-valued function $F:\mathbb{D}\to\mathbb{C}$ defined by

$$F(z) = \begin{bmatrix} 1 & 0\\ 0 & g(z) \end{bmatrix}$$
(1)

satisfies

$$\|F(z)\| = \max\{1, |g(z)|\} = 1$$
 for all $z \in \mathbb{D}$

whenever $g : \mathbb{D} \to \mathbb{C}$ is analytic and $|g(z)| \le 1$ for $z \in \mathbb{D}$ (e.g., g(z) = z). On the other hand, the Frobenius norm of F(z) is non-constant:

$$\|F(z)\|_{\mathcal{F}} = \sqrt{1+|g(z)|^2}.$$

Are there other examples?

Maximum Operator-Norm Principle: Our first version

Theorem

Let $F : \Omega \to \mathbb{M}_n$ be analytic. If there is a $z_0 \in \Omega$ so that $||F(z)|| \le ||F(z_0)||$ for all $z \in \Omega$, then there are $n \times n$ (constant) unitary^a matrices U and V, and an analytic function $G : \Omega \to \mathbb{M}_{n-1}$, such that

$$F(z) = U \begin{bmatrix} \|F(z_0)\| & 0\\ 0 & G(z) \end{bmatrix} V.$$
(2)

^aRecall that $A \in \mathbb{M}_n$ is said to be **unitary** if $A^*A = AA^* = I$.

Hence, the previously mentioned example is essentially the only example.

(日) (周) (三) (三)

Consequence: Maximum Singular Values Principle

Recall that the singular values $s_k(A)$, $1 \le k \le n$, of an $n \times n$ matrix A are the non-negative square roots of the eigenvalues of A^*A ordered in the non-increasing order, that is,

$$s_1(A) \geq s_2(A) \geq \ldots \geq s_n(A).$$

In particular, $s_1(A) = ||A||$ and $s_1^2(A) + s_2^2(A) + \cdots + s_n^2(A) = ||A||_{\mathcal{F}}^2$.

Theorem

Let $F : \Omega \to \mathbb{M}_n$ be analytic. If $z \mapsto s_k(F(z))$ attains its maximum value on Ω for each k = 1, ..., n, then F(z) is constant on Ω .

This might be considered a "perfect analog" of the MMP.

(日) (周) (三) (三)

Maximum Frobenius-Norm Principle Revisited

Corollary

The following statements are equivalent for $F : \Omega \to \mathbb{M}_n$ analytic.

- For every k = 1, ..., n, $s_k(F(z))$ attains its max. at some $z_k \in \Omega$.
- **2** For every k = 1, ..., n, $s_k(F(z))$ is constant on Ω .
- **3** $||F(z)||_{\mathcal{F}}$ attains its maximum value at some $z_0 \in \Omega$.
- $||F(z)||_{\mathcal{F}}$ is constant on Ω .
- **5** F(z) is constant on Ω .

3

Minimum Singular Values Principle

Theorem

If $F : \Omega \to \mathbb{M}_n$ is a non-constant analytic function, then no point $z_0 \in \Omega$ can be a minimum value for all of the functions $s_k(F(z))$, $1 \le k \le n$, unless det $F(z_0) = 0$.

Alternatively, the Theorem states that if every function $s_k(F(z))$, $1 \le k \le n$, attains a minimum value at $z_0 \in \Omega$, then $s_n(F(z_0)) = 0$.

Example 1:
$$F(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix}$$
 over the unit disk

Figure: $s_1(F(z))$ is constant and $s_2(F(z))$ has a min at z = 0

Alberto A. Condori (FGCU)

Maximum Principles

January 16, 2019 11 / 15

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Example 2:
$$F(z) = \begin{bmatrix} 1 & z \\ 0 & z - 1 \end{bmatrix}$$
 over the unit disk

Figure: $s_1(F(z))$ has a min. at $z_1 = 0$ and $s_2(F(z))$ has a min. at $z_2 = 1$.

Alberto A. Condori (FGCU)

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Return to resolvents

For
$$A \in \mathbb{M}_n$$
, $R_A(z) = (A - zI)^{-1}$ for $z \notin \sigma(A)$. Let
 $M_A = \sup_{\zeta \in \Omega} s_1(R_A(\zeta))$ and $m_A = \inf_{\zeta \in \Omega} s_n(R_A(\zeta))$.

Theorem

If $A \in \mathbb{M}_n$ and Ω is any region of $\mathbb{C} \setminus \sigma(A)$, then

 $s_1(R_A(z)) < M_A$ and $s_n(R_A(\zeta)) > m_A$ for all $z \in \Omega$.

In particular, $s_1(R_A(z))$ and $s_n(R_A(z))$ are non-constant on any disk not containing any eigenvalue of A.

Return to matrix exponentials

For
$$A \in \mathbb{M}_n$$
, $\exp(zA) = \sum_{n=0}^{\infty} \frac{z^n}{n!} A^n$.

Since $\exp(zA)$ and $(A - zI)^{-1}$ are closely related, we ask:

- Could s₁(exp(zA)) and s_n(exp(zA)) not attain their maximum or minimum values?
- Could s₁(exp(zA)) and s_n(exp(zA)) be constant on a disk not containing any eigenvalue of A?

For answers, consider

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \exp(zA) = \begin{bmatrix} 1 & 0 \\ 0 & e^z \end{bmatrix}$$

For more information, see my paper Maximum Principles for Matrix-Valued Analytic Functions to appear in **The American Mathematical Monthly**.

Thank you!