Polynomially isometric matrices in low dimensions Based on joint work with C. Brooks and N. Seguin

A.A. Condori

Florida Gulf Coast University, Fort Myers, FL

January 24, 2020

A.A. Condori (FGCU)

Norm Behavior

January 24, 2020 1 / 20

Outline

- Functional calculus of a matrix A and its importance
- Notions of size/norm of a matrix A
- Olynomially isometric matrices
- Pseudospectra

- Partial bad news
- Partial good news
- We end with better news!

Functional calculus of a matrix

Given an $d \times d$ matrix A, it is of importance to consider matrices that can be generated by A, e.g.

$$A^2$$
, $A^3 + 4A^2$, $I + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 + \frac{1}{24}A^4 + \dots$, etc.

- I How can all such matrices be written concisely?
- Why is this important?

First consumer: Linear Algebra

Eigenvalues: Every matrix A has an eigenvalue λ, i.e. there is a vector v ≠ 0 so that Av = λv.

One-line proof: Given $w \neq 0$, there is a polynomial p so that p(A)w = 0.

• Numerical methods: The convergence of algorithms to compute solutions to Ax = b rely on estimates on the size of certain p(A)'s and on their rate of decay, e.g. GMRES,

$$||Ax_m - b|| = \min\{||p(A)x_0|| : \deg p \le m, p(0) = 1\}.$$

Second consumer: Differential Equations

O Computation of solutions: How to solve the DE below?

$$y''(t) + c_1 y'(t) + c_0 y(t) = f(t)$$

Easy: If $p(z) = z^2 + c_1 z + c_0 = (z - \lambda_1)(z - \lambda_2)$ and let *D* denotes the differentiation operator, the DE above states p(D)y = f.

Obscay estimates: Solutions to the system of DEs x' = Ax depend on || f(A) ||, where f(t) = exp(tA).

What is the size of a matrix?

For a vector $x = (x_1, x_2, ..., x_n)$, we use the *Euclidean norm*

$$|x| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

Likewise, one may use the **Frobenius/Euclidean norm** $||A||_F$ which is easy to compute, but not useful in practice.

In practice, one needs to measure the "largest distortion" among unit vectors. The spectral norm ||A|| of A is defined as $||A|| = \max_{|v|=1} |Av|$.

Exercises: (1) Show that $||A||_F = \sqrt{10}$ but $||A|| = 2\sqrt{2}$. (2) Show that the "smallest distortion" is $\min_{|v|=1} |Av| = \frac{1}{||A^{-1}||}$.

Our main question

Given a pair of square matrices A and B, what set of invariants (e.g. eigenvalues, Frobenius norms, etc.) are necessary and sufficient to ensure that A and B are "polynomially isometric"?

We say that A and B are polynomially isometric if

||p(A)|| = ||p(B)|| for all polynomials p.

What quantity may capture the "spirit" of a matrix?

The spectrum of A

The **spectrum** $\sigma(A)$ of A is the set of its eigenvalues.

If you are familiar with the Spectral Theorem: What do you think?

Moral: Spectral analysis is ineffective

The matrices $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ have equal spectra, but ||A|| = 1 and $||B|| = \sqrt{2}$, i.e. A and B are not polynomially isometric.

More generally, it is now well-known to numerical analysts that the spectrum is rarely sufficient to analyze a matrix. If so, what is a more effective replacement?

Pseudospectra

Roughly, a **pseudospectral plot** for a matrix A consists of contour plots of the norm $||(zI - A)^{-1}||$ of its resolvent $z \mapsto (zI - A)^{-1}$. A recent book by Trefethen and Embree illustrates that pseudospectra may capture the "spirit" of a (non-normal) matrix more effectively.

As before,
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$. Are their graphs *identical*?

Figure: Sketch of $||(zI - A)^{-1}||$

Figure: Sketch of $||(zI - B)^{-1}||$

Main Question

For A and B to be polynomially isometric, is it necessary and sufficient that A and B have identical pseudospectra?

Recall that A and B are **polynomially isometric** if

 $\|p(A)\| = \|p(B)\|$ for all polynomials p. (1)

Also, A and B have identical pseudospectra if

$$\|(zI - A)^{-1}\| = \|(zI - B)^{-1}\|$$
 for all $z \in \mathbb{C}$. (2)

The implication $1 \Longrightarrow 2$ is due to Greenbaum & Trefethen (1993).

Moreover, $1 \iff 2$ holds if at least one of the matrices is normal; this is a consequence of previous work of Brooks and Condori (2018).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Negative results

- An example due to Greenbaum and Trefethen (1993) shows that there are 5 × 5 matrices having identical pseudospectra for which the condition in (1) fails with p(z) = z.
- An example due to Fortier Bourque and Ransford (2009) shows that there are 4 × 4 matrices having identical pseudospectra but whose squares have distinct norms, i.e. (1) fails with p(z) = z².

What about matrices of *lower* dimensions?

The case of 2×2 matrices

Theorem

The following statements are equivalent for $A, B \in \mathbb{M}_2$.

A and B have identical pseudospectra.

2 A and B are polynomially isometric.

3 A and B are unitarily similar.

"1 \iff 2" was observed by Greenbaum & Trefethen (1993).

A former FGCU student, N. Camacho and I also worked out a proof for his Senior Seminar project (2016); however, we did not realize the equivalence to 3 at time.

Translation to an "easy-to-check" criterion

Corollary

For A, $B \in \mathbb{M}_2$ to be polynomially isometric, it is necessary and sufficient that

tr
$$A^*A = \text{tr } B^*B$$
, tr $A = \text{tr } B$, and tr $A^2 = \text{tr } B^2$.

Exercise 1: Why are
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ not polynomially isometric?

Exercise 2: Construct matrices $A, B \in \mathbb{M}_2$ which are similar but do not have identical pseudospectra.

The case of 3×3 matrices - Part 1

Theorem

The following statements are equivalent for $A, B \in \mathbb{M}_3$.

() A and B have identical pseudospectra and characteristic polynomials.

2 tr
$$(A^*A) =$$
tr (B^*B) , tr $(A^*A^2) =$ tr (B^*B^2) ,
tr $(A^{*2}A^2) =$ tr $(B^{*2}B^2)$, tr $A^k =$ tr B^k for $k = 1, 2, 3$

In particular, A and B must be polynomially isometric.

Exercise: Consider the matrices

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}.$$
(3)

Show that the matrices in (3) are polynomially isometric.

Are they unitarily similar?

The case of 3×3 matrices - Part 2

Question

In the previous theorem, is the requirement that A and B have the same characteristic polynomials really important?

To address this question, consider the matrices

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Where does this leave us in our quest to characterize polynomially isometric matrices? Is having identical pseudospectra good enough?

The case of 3×3 matrices - Part 3

Theorem

The following statements are equivalent for $A, B \in \mathbb{M}_3$.

- A and B have identical pseudospectra.
- A and B are polynomially isometric.

Moreover, if A and B also have the same minimal polynomial of degree 2, then the above statements are equivalent to

3. $||A - \gamma_A I||_F = ||B - \gamma_B I||_F$, where γ_A and γ_B are the eigenvalues corresponding to A and B, respectively, of largest multiplicity.

Recap

- Functional calculus of a matrix A and its importance
- Output Notions of size/norm of a matrix A
- Olynomially isometric matrices
- Pseudospectra (as a more effective replacement to spectra)
 - Partial bad news (counterxamples in dimensions 4 & 5)
 - Partial good news (success in the 2 × 2 case)
 - We now have better news: success in the 3 × 3 case with easy-to-check criteria!

Challenge: Test your knowledge!

Only two of the following seven matrices are polynomially isometric but *not* unitarily similar. Find them!

$$\begin{aligned} A_1 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_2 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad A_3 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \\ A_4 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad A_5 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_6 &= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \\ A_7 &= \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}. \end{aligned}$$

3

イロト イポト イヨト イヨト

A.A. Condori (FGCU)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

- Brooks, C.D., Condori, A.A. (2018). A resolvent criterion for normality. Amer. Math. Monthly. 125(2): 149–156.
- Fortier Bourque, M., Ransford, T. (2009). Super-identical pseudospectra, *J. Lond. Math. Soc.* (2) 79(2): 511–528.
- Greenbaum, A., Trefethen, L.N. (1993). Do the pseudospectra of a matrix determine its behavior? Technical Report TR 93-1371, Department of Computer Science, Cornell University.
 - Marcoux, L.W., Zhang, Y. (2020) Operators which are polynomially isometric to a normal operator. *Proc. Amer. Math. Soc.* In press. https://doi.org/10.1090/proc/14861

< □ > < 同 > < 三 > < 三 >