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Functional calculus of a matrix

Given an d × d matrix A, it is of importance to consider matrices that can
be generated by A, e.g.

A2, A3 + 4A2, I + A +
1

2
A2 +

1

6
A3 +

1

24
A4 + . . . , etc.

1 How can all such matrices be written concisely?

2 Why is this important?
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First consumer: Linear Algebra

1 Eigenvalues: Every matrix A has an eigenvalue λ, i.e. there is a
vector v 6= 0 so that Av = λv .

One-line proof: Given w 6= 0, there is a polynomial p so that
p(A)w = 0.

2 Numerical methods: The convergence of algorithms to compute
solutions to Ax = b rely on estimates on the size of certain p(A)’s
and on their rate of decay, e.g. GMRES,

‖Axm − b‖ = min{‖p(A)x0‖ : deg p ≤ m, p(0) = 1}.
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Second consumer: Differential Equations

1 Computation of solutions: How to solve the DE below?

y ′′(t) + c1y
′(t) + c0y(t) = f (t)

Easy: If p(z) = z2 + c1z + c0 = (z − λ1)(z − λ2) and let D denotes
the differentiation operator, the DE above states p(D)y = f .

2 Decay estimates: Solutions to the system of DEs x ′ = Ax depend on
‖f (A)‖, where f (t) = exp(tA).
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What is the size of a matrix?
For a vector x = (x1, x2, . . . , xn), we use the Euclidean norm

|x | =
√

x21 + x22 + . . .+ x2n .

Likewise, one may use the Frobenius/Euclidean norm ‖A‖F which is
easy to compute, but not useful in practice.
In practice, one needs to measure the “largest distortion” among unit
vectors. The spectral norm ‖A‖ of A is defined as ‖A‖ = max|v |=1 |Av |.

−→

A =

[
1 2
−1 2

]
Exercises: (1) Show that ‖A‖F =

√
10 but ‖A‖ = 2

√
2.

(2) Show that the “smallest distortion” is min
|v |=1

|Av | =
1

‖A−1‖
.

A.A. Condori (FGCU) Norm Behavior January 24, 2020 6 / 20

http://faculty.fgcu.edu/acondori/


Our main question

Given a pair of square matrices A and B, what set of invariants
(e.g. eigenvalues, Frobenius norms, etc.) are necessary and suffi-
cient to ensure that A and B are “polynomially isometric”?

We say that A and B are polynomially isometric if

‖p(A)‖ = ‖p(B)‖ for all polynomials p.

The spectrum of A

What quantity may capture the
“spirit” of a matrix?

The spectrum σ(A) of A is the set
of its eigenvalues.

If you are familiar with the Spectral Theorem: What do you think?
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Moral: Spectral analysis is ineffective

The matrices A =

[
1 0
0 0

]
and B =

[
1 0
1 0

]
have equal spectra, but

‖A‖ = 1 and ‖B‖ =
√

2, i.e. A and B are not polynomially isometric.

More generally, it is now well-known to numerical analysts that the
spectrum is rarely sufficient to analyze a matrix. If so, what is a more
effective replacement?
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Pseudospectra
Roughly, a pseudospectral plot for a matrix A consists of contour plots
of the norm ‖(zI − A)−1‖ of its resolvent z 7→ (zI − A)−1. A recent book
by Trefethen and Embree illustrates that pseudospectra may capture the
“spirit” of a (non-normal) matrix more effectively.

As before, A =

[
1 0
0 0

]
and B =

[
1 0
1 0

]
. Are their graphs identical?

Figure: Sketch of ‖(zI − A)−1‖ Figure: Sketch of ‖(zI − B)−1‖
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Main Question

For A and B to be polynomially isometric, is it necessary and sufficient
that A and B have identical pseudospectra?

Recall that A and B are polynomially isometric if

‖p(A)‖ = ‖p(B)‖ for all polynomials p. (1)

Also, A and B have identical pseudospectra if

‖(zI − A)−1‖ = ‖(zI − B)−1‖ for all z ∈ C. (2)

The implication 1 =⇒ 2 is due to Greenbaum & Trefethen (1993).

Moreover, 1⇐⇒ 2 holds if at least one of the matrices is normal; this is a
consequence of previous work of Brooks and Condori (2018).

A.A. Condori (FGCU) Norm Behavior January 24, 2020 10 / 20

http://faculty.fgcu.edu/acondori/


Negative results

1 An example due to Greenbaum and Trefethen (1993) shows that
there are 5× 5 matrices having identical pseudospectra for which the
condition in (1) fails with p(z) = z .

2 An example due to Fortier Bourque and Ransford (2009) shows that
there are 4× 4 matrices having identical pseudospectra but whose
squares have distinct norms, i.e. (1) fails with p(z) = z2.

What about matrices of lower dimensions?
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The case of 2× 2 matrices

Theorem

The following statements are equivalent for A,B ∈M2.

1 A and B have identical pseudospectra.

2 A and B are polynomially isometric.

3 A and B are unitarily similar.

“1⇐⇒ 2” was observed by Greenbaum & Trefethen (1993).

A former FGCU student, N. Camacho and I also worked out a proof for his
Senior Seminar project (2016); however, we did not realize the equivalence
to 3 at time.
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Translation to an “easy-to-check” criterion

Corollary

For A,B ∈M2 to be polynomially isometric, it is necessary and sufficient
that

trA∗A = trB∗B, trA = trB, and trA2 = trB2.

Exercise 1: Why are A =

[
1 0
0 0

]
and B =

[
1 0
1 0

]
not polynomially

isometric?

Exercise 2: Construct matrices A,B ∈M2 which are similar but do not
have identical pseudospectra.
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The case of 3× 3 matrices - Part 1

Theorem

The following statements are equivalent for A,B ∈M3.

1 A and B have identical pseudospectra and characteristic polynomials.

2 tr (A∗A) = tr (B∗B), tr
(
A∗A2

)
= tr

(
B∗B2

)
,

tr
(
A∗2A2

)
= tr

(
B∗2B2

)
, trAk = trBk for k = 1, 2, 3.

In particular, A and B must be polynomially isometric.

Exercise: Consider the matrices

A =

 0 1 0
0 0 2
0 0 0

 and B =

 0 0 0
1 0 0
0 2 0

 . (3)

1 Show that the matrices in (3) are polynomially isometric.

2 Are they unitarily similar?
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The case of 3× 3 matrices - Part 2

Question

In the previous theorem, is the requirement that A and B have the same
characteristic polynomials really important?

To address this question, consider the matrices

A =

 1 0 0
0 0 0
0 0 0

 and B =

 1 0 0
0 1 0
0 0 0

 .
Where does this leave us in our quest to characterize polynomially
isometric matrices? Is having identical pseudospectra good enough?
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The case of 3× 3 matrices - Part 3

Theorem

The following statements are equivalent for A,B ∈M3.

1 A and B have identical pseudospectra.

2 A and B are polynomially isometric.

Moreover, if A and B also have the same minimal polynomial of degree 2,
then the above statements are equivalent to

3. ‖A− γAI‖F = ‖B − γB I‖F , where γA and γB are the eigenvalues
corresponding to A and B, respectively, of largest multiplicity.
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Recap

1 Functional calculus of a matrix A and its importance

2 Notions of size/norm of a matrix A

3 Polynomially isometric matrices

4 Pseudospectra (as a more effective replacement to spectra)

5 Partial bad news (counterxamples
in dimensions 4 & 5)

6 Partial good news (success in the
2× 2 case)

7 We now have better news:
success in the 3× 3 case with
easy-to-check criteria!
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Challenge: Test your knowledge!

Only two of the following seven matrices are polynomially isometric but
not unitarily similar. Find them!

A1 =

 1 0 0
0 1 0
0 0 0

 , A2 =

 1 0 0
0 1 0
1 0 0

 , A3 =

 0 0 0
0 0 1
0 0 1

 ,
A4 =

 0 0 0
0 1 0
1 0 0

 , A5 =

 1 0 0
0 0 1
0 0 0

 , A6 =

 0 1 0
1 0 0
0 0 0

 ,
A7 =

 0 0 0
1 0 0
0 1 0

 .
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