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Fast adaptive estimation of multidimensional psychometric

functions

Department of Psychology, Florida Gulf Coast University,
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Recently in vision science there has been great interest
in understanding the perceptual representations of
complex multidimensional stimuli. Therefore, it is
becoming very important to develop methods for
performing psychophysical experiments with
multidimensional stimuli and efficiently estimating
psychometric models that have multiple free
parameters. In this methodological study, | analyze three
efficient implementations of the popular ¥ method for
adaptive data collection, two of which are novel
approaches to psychophysical experiments. Although the
standard implementation of the ¥ procedure is
intractable in higher dimensions, | demonstrate that my
implementations generalize well to complex
psychometric models defined in multidimensional
stimulus spaces and can be implemented very efficiently
on standard laboratory computers. | show that my
implementations may be of particular use for
experiments studying how subjects combine multiple
cues to estimate sensory quantities. | discuss strategies
for speeding up experiments and suggest directions for
future research in this rapidly growing area at the
intersection of cognitive science, neuroscience, and
machine learning.

Several recent studies in vision science have exam-
ined how observers combine information from multi-
ple stimulus dimensions to make perceptual decisions
(Landy & Kojima, 2001; Hillis, Watt, Landy, & Banks,
2004; Knill & Pouget, 2004; Trommershauser, Kord-
ing, & Landy, 2011). Combination of multiple sensory
cues is essential for natural perception, as demon-
strated in Figure 1, where we see that detection and
localization of this occlusion edge requires combining
multiple sources of information like luminance, color,
and texture. Doing psychophysics with multidimen-
sional stimuli poses a significant methodological

Computational Perception Laboratory,

RS

Fort Myers, FL, USA

challenge, and therefore traditionally most psycho-
physical studies have considered only variations along
a single stimulus dimension, holding other stimulus
features fixed (Kingdom & Prins, 2010; Lu & Dosher,
2013). While this traditional approach has proven
highly effective for simple, artificial stimuli like bars
and gratings defined by only a few parameters
(Skottun, Bradley, Sclar, Ohzawa, & Freeman, 1987;
Vogels & Orban, 1990), it may not be as effective for
complex naturalistic stimuli defined by multiple
interacting feature dimensions (Landy & Kojima,
2001; McGraw, Whitaker, Badcock, & Skillen, 2003;
Ing, Wilson, & Geisler, 2010; DiMattina, Fox, &
Lewicki, 2012; Zavitz & Baker, 2014), particularly in
cases where the combination of stimulus features is
nonlinear.

Quantifying perception of multidimensional stimuli
often gives rise to models that have multiple free
parameters which must be estimated from experimen-
tal data. In this paper, I will use the term multidimen-
sional to refer to the case where there are multiple
stimulus dimensions which give rise to models that
have a relatively large number of free parameters. The
major problem posed by the need to identify multidi-
mensional sensory-processing models from experi-
mental data is the ability to collect sufficient data for
attaining accurate estimates of model parameters in
the time available to work with a subject. One
approach to speeding up the collection of sensory data
is to design stimuli adaptively so that at each trial, one
presents stimuli optimized for the goal of accurate
parameter estimation (Chaloner & Verdinelli, 1995;
Lewi, Butera, & Paninski, 2009; DiMattina & Zhang,
2011). This general approach of adaptively choosing
stimuli during an experiment to maximize some utility
function goes by a variety of names, including adaptive
design optimization (Cavagnaro, Myung, Pitt, &
Kujala, 2010) and optimal experimental design (At-
kinson, Donev, & Tobias, 2007; DiMattina & Zhang,
2011), and many different algorithms of this kind have
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Figure 1. Complex natural stimuli like this occlusion edge are
defined by multiple cues which must be integrated to make a
perceptual decision.

been proposed and applied in experiments to accelerate
the process of estimating psychometric function
parameters (Hall, 1981; Watson & Pelli, 1983; Kont-
sevich & Tyler, 1999; Kujala & Lukka, 2006; Lesmes,
Lu, Back, & Albright, 2010; Prins, 2013b). However,
with few exceptions (Kujala & Lukka, 2006; Lesmes et
al., 2010), nearly all of these procedures have been
applied to estimating psychometric functions defined
in 1-D stimulus spaces.

In this computational-methods study, I analyze three
efficient implementations of the well-studied ¥ proce-
dure (Kontsevich & Tyler, 1999) which generalize well
to identifying multidimensional psychometric models.
One of these implementations (Prior-¥) has been
applied in previous work (Kujala & Lukka, 2006),
while two of them (Lookup-¥ and Laplace-¥)
represent (to the best of my knowledge) novel
proposals for psychophysical experiments. I demon-
strate in simulated psychophysical experiments that
these implementations offer a substantial speedup over
the original grid-based implementation (Grid-¥), and
make it possible to quickly estimate the parameters of
multidimensional psychometric models using standard
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laboratory computers and software packages. I dem-
onstrate how my methods may be of particular use for
studies of how subjects integrate multiple cues when
making perceptual decisions. Finally, I point to
directions for future research and provide code online
for implementing these procedures.

Methods and results

Estimating psychometric functions
The psychometric function

In psychophysical experiments, the main object of
study is to characterize the parameters @ of some
psychometric function F(x, @) mapping stimulus pa-
rameter values x to the range [0, 1]. The goal of
characterizing this function’s parameters 6 is to
accurately model the process generating the data. For
an n-alternative forced-choice experiment, the proba-
bility W of a correct response given stimulus parameters
X is given by

P(x,0, e, m) = (1 m)(nc 4 (1 = m) F(x, 0))
+ mne,
(1)
where 7 is the lapse rate and = is the chance of
obtaining a correct response by guessing (Kuss, Jakel,

& Wichmann, 2005). One popular choice of the
psychometric function is given by

F(x,0) =0a(0y + 0:x), (2)
where
1
o) =1 ()

is the logistic or sigmoidal function commonly used in
machine learning and neural modeling (Murphy, 2012).
Although there are many choices of sigmoid-shaped
curves that are commonly used in modeling psycho-
physical data, all of them yield very similar estimates of
important psychophysical parameters like sensory
thresholds (Kingdom & Prins, 2010). A different
parameterization of the psychometric function in
Equation 2 that makes more explicit the psychophysical
parameters of interest may be written as

F(x7 Aoy ﬁ) = G(ﬁ(x - A))? (4)

where A is the threshold and f the sensitivity. This
formulation is equivalent to that in (2), with 0, = and
0o=—p4. Figure 2a illustrates a sigmoidal psychometric
function.
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Figure 2. Examples of psychometric functions F(x, ) for one- and two-dimensional stimulus spaces. (a) A logistic psychometric
function (Equation 2) with threshold /=0 and sensitivity = 1. This function is one of several sigmoidal forms used in psychophysical
research. (b) Level sets of the 2-D psychometric function (Equation 6) for two different values of the model parameter vector 0 = (0o,

01, 05, 015)". Left: Y = (=3, 1, 1, 1)". Right: 0¥ = (-3, 1, 1, 0)".

Multidimensional stimulus spaces

In many psychophysical experiments, it may be of
interest to know how multiple stimulus parameters x =
(x1, ..., xy) " interact to effect perception. For instance,
recent investigations have considered how observers
combine multiple cues like texture gradients and
stereoscopic information for estimating the slant of a
surface (Knill & Saunders, 2003; Hillis et al., 2004),
while other investigations have considered how haptic
and visual information are combined in performing
reaching movements (Ernst & Banks, 2002). Other
studies have considered how various cues are integrated
when subjects perceive complex natural stimuli like
occlusion boundaries or surfaces defined by multiple
cues like texture, color, and luminance (Landy &
Kojima, 2001; McGraw et al., 2003; Ing et al., 2010;
DiMattina et al., 2012; Saarela & Landy, 2012). In the
simplest case, cues are combined in a linear manner,
and one can predict the response to simultaneous
variations of multiple cues from the responses to each
cue in isolation (Ernst & Banks, 2002; Knill &
Saunders, 2003). However, several previous studies
have demonstrated that sensory cues do not always
combine linearly (Frome, Buck, & Boynton, 1981;
Saunders & Knill, 2001; Zhou & Mel, 2008), making it
necessary to covary several feature dimensions simul-
taneously to fully characterize the nature of their
interactions.

Since the goal of this paper is to develop and analyze
computational methods for multidimensional psycho-
physical experiments rather than to suggest particular
models for sensory cue combination, I will mainly
develop my implementations of the ¥ method in the
context of generic multivariate logistic regression
models (Bishop, 2006) which generalize the univariate
model in Equation 2. These implementations can be
readily extended to models of similar complexity which

are motivated by specific perceptual or neural hypoth-
eses.

Generalizing the psychometric function

Generalization of the 1-D psychometric function
(Equation 2) to two stimulus variables x; and x, which
models the contribution of each individual variable and
their possible multiplicative interactions may be written
as

F(x,0) = (0o + 01x1 + 02x2 + O12x1x2 + Hllx%
—+ 922)6%).

(5)

In this paper, I will consider a simplified version of
Equation 5 with zero diagonal terms, written

F(X, 0) = 0'(9() 4+ 01x1 + Orx7 + 912)61)62). (6)

An example 2-D psychometric function of the form
in Equation 6 is illustrated in Figure 2b for two
different parameter vectors 6. Generalizing Equation 6
to three stimulus variables is relatively straightforward,
and in this case we have

F(x,0) = (0o + 01x1 + 0,x2 + O3x3 + 012x1x2
+ 013x1x3 + O3x2x3 + O123x1x2x3). (7)

It is important to note that these generalizations are
certainly not the only possibilities for experiments
involving multidimensional stimulus spaces, and other
parameterization schemes have been proposed and
used in experiments (Kujala & Lukka, 2006; Lesmes et
al., 2010).

From Equations 6 and 7, we see that, when modeling
all possible nondiagonal multiplicative interactions
between stimulus parameters, increasing the dimen-
sionality of the stimulus space causes the dimensional-
ity of the parameter space to increase drastically. In

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/j our nals/j ov/934201/ on 06/29/2017



Journal of Vision (2015) 15(9):5, 120

general, we find that for an N-dimensional stimulus
space, the parameter-space dimensionality M will be

M:é(é\f) (8)

For the models in Equations 6 and 7, a simple
reparameterization of the stimulus space allows us to
write them as the linear multivariate logistic regression
model encountered in statistics and machine learning
(Bishop, 2006; Murphy, 2012). For instance, we may
reparameterize the function in Equation 6 using the
three variables y; = x;, y» = X», and y3 = x1x,. The
general form of this reparameterized model is

M—1
F(Y70) = 0(00 + Z 91‘)’1')7 (9)

where y = (31, ..., var_1)" are the reparameterized
stimuli, with M being the parameter-space dimension-
ality as given in Equation 8.

The estimation problem and adaptive stimulus design

As the number of model parameters increases, the
amount of data needed to obtain a reliable estimate
increases greatly, running up against the limitations
posed by the amount of time available to work with an
experimental subject. This curse of dimensionality
(Bellman, 1961; Bishop, 2006) is quite familiar from
studies using classification images (Mineault, Bar-
thelme, & Pack, 2009; Murray, 2011), as well as sensory
neurophysiology (Wu, David, & Gallant, 2006). Even
in estimating the univariate psychometric function in
Equation 2, a large amount of data must be collected in
order to obtain sufficiently tight confidence intervals to
see the effects of experimental manipulations on
important psychometric function parameters like
thresholds and slopes (Maloney, 1990; Wichmann &
Hill, 2001). For this reason, numerous procedures have
been developed to speed up the collection of psycho-
physical data using adaptive stimulus generation, the
most popular of which is the ¥ method (Kontsevich &
Tyler, 1999). These methods greatly decrease the
number of stimuli needed to obtain reliable estimates of
psychometric function parameters, at the cost of
increased trial duration due to the need to iteratively
compute the next stimulus.

Grid-'Y
Method description

The most popular method for adaptive data
collection in psychophysical research is the ¥ method,

an information-theoretic algorithm which chooses
stimuli with the goal of most rapidly reducing the
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uncertainty about the parameter values as measured
using the entropy of the posterior density (Kontsevich
& Tyler, 1999). Although the usual grid-based imple-
mentation of the ¥ method is fast and effective for the
standard two-parameter psychometric function (Equa-
tion 2) defined on a 1-D stimulus space (Kontsevich &
Tyler, 1999; Prins, 2013a), it quickly becomes intrac-
table for models defined in higher dimensional stimulus
spaces with more parameters which must be estimated
(Kujala & Lukka, 2006). I will refer to this standard
implementation as Grid-'P.

The idea behind the Grid-¥ method is that one
maintains an evolving posterior density p, (0;) defined
on a discrete grid of potential model parameter values
Se = {01,...,0y,}. In this paper I will use the notation
P,(0;) to denote a dlscrete density defined on my set of
supports Se (with 32", 5,(0x) = 1), and the notation
pa(0,) to denote the original continuous density
evaluated on the support 0. As new stimulus-response
observations (X,..1, ,41) are obtained, this density is
updated using Bayes’s rule:

1
Pui1(0:) = Ep(rnﬂ 11, 0:)p,,(0:), (10)

where Z = "N p(ryii[Xas1,0:)5,(0;) is a normaliza-
tion constant. The uncertainty about the true param-
eter value is quantified using the Shannon entropy
(Cover & Thomas, 2012) of the posterior distribution,
given by the expression

Ny

= _an lnpn (11)

At each step, the algorithm chooses the next stimulus
X,+1 to present by finding the stimulus in a discrete set
X = {xi,...,xy, } for which the expected value of the
subsequent entropy H,,,; averaged over possible subject
responses ¥ =0 or 1 is minimized. In other words,
entropy is estimated by integrating out uncertainty
about the true model parameters over the current
posterior density j,(0;) as well as uncertainty about the
subject’s responses p(r|x). Mathematically, we write

Xp+1 = arg inax<_Hn+l(X)>r7 (12)
where
(Hy11(X)), = Hpp1 (X, r = 1)p(r = 1]x)
+Hy i1 (x, 1 = 0)p(r = 0[x), (13)

with the calculation of p(r|x) accomplished by integra-
tion over the current posterior. Efficient implementa-
tion of this procedure relies on a precomputed lookup
table of the value of p(r|x;, 8)) for r =0 and 1 over all
0; € © and x; € X. A full description of the ¥ method
and run-time analysis is given elsewhere (Kontsevich &
Tyler, 1999; Kujala & Lukka, 2006).
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Figure 3. Performance of the standard Grid-¥ method in simulated psychophysical experiments. (a) Left: Error E, between current
estimate and true observer parameters for uniform sampling (green) and the Grid-¥ method (blue) averaged over 100 Monte Carlo
trials. Thin dotted lines denote 95% confidence intervals. Right: Posterior entropy for both methods. (b) Placement of stimuli for the
Grid-W¥ procedure (thick blue line). Overlaid is the true psychometric function, vertically scaled to [0, 0.3] (dashed black line). (c) Same
as (a) but for the two-dimensional psychometric function specified mathematically in Equation 6. (d) Stimulus placement for the 2-D
Grid-¥ procedure, overlaid on the contours of constant response probability. Black dots denote the unique stimuli presented, with
the size of the dot proportional to how often the stimulus was presented. A compressive transformation (1/u) is applied to enhance
visibility of intermediate-sized dots, with percentage stimulus placements shown above the figure.

Numerical experiments

For the sake of comparison with the methods
developed in this paper, I quantified the performance of
the Grid-¥Y method for the case of D, =1 and D, =2
stimulus dimensions. I simulated psychophysical ex-
periments in MATLAB on two different systems (3.30
GHz Intel Xeon-64 and 3.0 GHz Intel® i7-32) and
quantified the improvements in parameter estimation
due to the Grid-¥ method as well as the per-trial
running time. To quantify the estimation error on a
trial-by-trial basis, we obtain a point estimate 6,, of the
parameter values by taking the expectation over the
current posterior

:Am@w

and quantifying the error as E, = ||0, — 0r||. At the end
of the experiment we also optimize the likelihood to
attain the maximum likelihpod (ML) estimate Oy, from
which we obtain Eyy = ||0w — 07|

As we see in Figure 3a (left panel), in the 1-D case for
a hypothetical observer with true parameters 01 =
(0, DT, the Grid-¥Y method (a special case of optimal
experimental design or OED) greatly increases the
accuracy of our parameter estimates when compared to

0, (14)

independent and identically distributed (IID) sampling
from a discrete grid of evenly spaced points (i.c., the
method of constant stimuli) and yields a posterior
density with lower entropy (Figure 3a, right panel).
Stimulus placement is shown in Figure 3b, with the blue
curve indicating the empirical stimulus probabilities
from all trials and all 100 Monte Carlo experiments.
We see from this plot that the Grid-¥ method
concentrates its sampling near the endpoints of the
linear region of the psychometric function (black
dashed line, scaled to [0, 0.3]). These findings are
consistent with the original study of the ¥ method
(Kontsevich & Tyler, 1999), where stimulus placement
was concentrated in a similar region of the psycho-
metric function. Further analysis reveals that at the
endpoints of the linear region, there is a large change in
the probability of a correct response when the
psychometric function parameters are varied, for both
the sigmoidal form (Equation 2) and the form used by
Kontsevich and Tyler (1999; see also Supplementary
Figure S1).

In this example, [ used L, = Ly = L = 51 levels per
stimulus and parameter dimension, with stimuli being
chosen from a uniform grid on the interval [-7, 7]. To
generate the grid of parameter values, I uniformly
spaced logpe[—1, 1], A€[-2,2] and computed 0, = f,
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0o = —p4. When efficiently implemented using fully
vectorized MATLAB/Octave code (available at http://
itech.fgcu.edu/faculty/cdimattina/), the 1-D Grid-¥
method is quite fast, taking less than 10 ms/trial (6.97
+ 0.18 ms, Nyjas = 5,000) on a high-end workstation
(Intel Xeon-64) and about 50 ms/trial (49.13 = 1.31
ms, Nyiais = 5,000) on a midrange system (Intel 17-32).
Similar but more modest improvements were seen over
the more restricted range of stimuli [-5, 5], which more
closely corresponds to the dynamic range of the 1-D
sigmoid for this simulated observer in Figure 3a
(Supplementary Figure S2). However, in general the
appropriate dynamic range for a given observer may be
unknown prior to the experiment, making it wise to err
on the side of caution and to include at least a few
stimuli along each tested dimension which will always
be detected (or missed) by every subject.

Because of this exponential growth in run time as
well as memory requirements of the Grid-¥ method,
implementing this procedure for the multivariate
logistic regression model (Equation 6) with two
stimulus dimensions becomes intractable at the same
grid densities (L = 51) I used in the 1-D case. Using
much less dense grids (L = 21) permitted implementa-
tion of this method, but it took nearly 4 s/trial (Intel
Xeon-64 workstation) to generate the next stimulus
(3.96 £ 0.013 s, Nyja1s = 100), making it far too slow for
use in actual psychophysical experiments. In the 2-D
implementation, I used a factorial grid of stimulus
values xi, x, € [0, 5] and defined a factorial grid of
parameter values by uniformly spacing log0;, log0,,
logf;» € [-1, 1] and 6y = Af, where A € [0, 4] and logf} €
[-1, 1]. As in the 1-D case, we obtain a substantial
reduction in error (Figure 3c, left panel) and entropy
(Figure 3c, right panel) with the Grid-¥ procedure for
a hypothetical observer having true parameters 0 =
(=3, 1, 1, DT. In this example, the true observer had a
nonzero interaction term 0;,, which led to stimulus
placement along the diagonal x; = x5 of the stimulus
space (Figure 3d) as well as along each of the individual
stimulus axes. As with the 1-D case, the stimulus
placement was located in regions of the stimulus space
where there is a large change in the probability of
correct response with respect to each of the psycho-
metric function parameters (Supplementary Figure S3).
This simple example nicely illustrates the necessity of
simultaneously covarying stimulus parameters when
there is the potential for nonlinear interactions. By
contrast, for simulations on models similar to Equation
6 except without a nonlinear interaction term 0;,—i.e.,
F(x, 0) =a(0y + 0; x; + 6,x,)—we find that stimulus
placement is concentrated along the individual cardinal
axes (Supplementary Figure S4). This validates the
standard procedure of characterizing individual pa-
rameter dimensions separately when their interactions
are linear (Hillis et al., 2004). I now consider three
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alternative implementations of the W procedure which
are tractable in higher dimensions.

Prior-¥
Method description

The ¥ method requires approximating several
integrals over a posterior density. In practice, these
integrals are computed using a discrete particle filter
(Carpenter, Clifford, & Fearnhead, 1999) which
represents a contlnuous posterior den51ty p(0) by a
density SN w"'5(0 — 6;) defined on fixed supports S
={0,,.. BNH} subject to the normalization constraint

f.i’, w,( " = 1. One can approximate expectations with
respect to p,(0) using the expression

Ny
/f pn d0 ZW ‘ j (15)

where w"” is the importance weight associated with
each particle (Carpenter et al., 1999; Arulampalam,
Maskell, Gordon, & Clapp, 2002). In my implementa-
tion, the supports Sg are sampled from the prior py(0)
and fixed through the experiment (01(.”) =0, for all n).
The importance weights are initially set equal to 1/Ny
and evolve using sequential importance sampling,
where the importance function n0(0<”>|0<1:”’1>, ri,) and
state transition function p(0"”[0""~V) are both equal
to the prior po(0), leading to the simplified importance-
weight update rule:

(n+1) o (n)p(rnJrl’XnH’o(nJrl)) 0 (H+1>‘0§1:n))
" i (n+1) ln
77:0( |0 Piinsn)
e W,(’l)p(l’;z+1|xn+1, 01) (16)

Note that Equation 16 is simply sequential Bayesian
updatmg of the discrete posterior w;”’ = p,(0;), with
po(0) = w,” = 1/Ny.

A prev10us study (Kujala & Lukka, 2006) suggested
that one potential approach to increasing the tractability
of the ¥ method is to abandon the factorial, grid-based
representation of the posterior density used by Kontse-
vich and Tyler (1999) and instead represent the posterior
on a tractable number N, of supports sampled from
some prior density po(0). This naturally gives rise to the
question of how to specify an appropriate prior
distribution. One recent study (Kim, Pitt, Lu, Steyvers,
& Myung, 2014) suggests a principled way to specify
priors, namely via hierarchical Bayesian modeling where
the results of previous experiments are used to estimate a
hyper-prior which can be used to define a prior for
subsequent experiments. In the present study, I am
interested in the effects of using different sampling
strategies (adaptive and nonadaptive) while controlling
for the prior shape, and I do not systematically consider
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Figure 4. Performance of the of the Prior-¥ method. (a—d) For a Gaussian prior, with the same organization as Figure 2. (e—f) For a

uniform prior, with the same organization as Figure 2c and d.

the problem of prior specification or possible effects of
prior misspecification.

Although this idea of using a set of particles sampled
from a prior density has been proposed previously in
the psychometric literature, it has only been fully
implemented and analyzed for a specialized two-
dimensional psychometric function which parameter-
izes 2-D thresholds as ellipses (Kujala & Lukka, 20006).
In contrast, my treatment here is much more general, as
multivariate logistic regression (Equation 9) is a generic
machine-learning model which is applicable to many
possible types of experiment (Bishop, 2006). I refer to
this as the Prior-¥ method.

Numerical experiments

We see from Figure 4 that using a tractable number
of particles sampled from an informative prior density
manages to reproduce the main results seen in Figure 3
for the Grid-¥ method. In the 1-D example shown in
Figure 4a and b, I used Ny = 1,000 particles, and in the
2-D examples (Figure 4c through f) I used Ny= 5,000 or

10,000. For comparison, in the Grid-¥ method for 2-D
with L =21 levels per stimulus dimension, we have Ny=
L* = 194,481 particles. In one 2-D example (Figure 4c,
d), I used a Gaussian prior with ¢ in each dimension
equal to one half the upper and lower bounds of the
grids used in the Grid-¥ example. This guaranteed that
the set of particles sampled approximately the same
range of parameter values as before. Similar results
were obtained using the uniform prior implicitly
assumed in the Grid-¥ method, from which the same
numbers of particles were sampled (Figure 4e, f).
Figure 5 shows average stimulus generation times for
the 2-D experiment and median final estimation error
E, as a function of the number of particles Ny used to
represent the posterior for Prior-¥ and Grid-¥ (black
diamond). Supplementary Figure S5 shows the median
final error Enp. We see from Figure 5 (left panel) that
one can certainly increase the speed of the implemen-
tation by reducing the number of particles used to
represent the posterior, but this may reduce the
accuracy of the final parameter estimates (Figure 5,
right panel; Supplementary Figure S5). On the 32-bit

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/j our nals/j ov/934201/ on 06/29/2017


http://
http://

Journal of Vision (2015) 15(9):5, 120

21 — 32 bit
_ 1.5] — 64 bi
2
° 1
=
=05

0

3 4
log Ng

DiMattina 8

2
1.5
S @—%
w
0.5
0
3 4 5
log Ng

Figure 5. Left: Stimulus selection times for Prior-¥ as a function of the number of particles N, used to represent the posterior. Right:
Median final error E, as a function of N,. Blue circles indicate Prior-', and black diamonds Grid-V. Bars indicate 25th through 75th
percentiles (100 Monte Carlo trials). In this example | used the uniform prior implicit in the standard implementation of the ¥

method.

system, implementing Prior-¥ can potentially be slow
in cases where large numbers of particles are needed
(Ny=5,000: 737 = 31 ms; Ny=10,000: 1.60 £ 0.39 s,
Nisias = 10,000). Although stimulus selection times of
nearly 1 s may be acceptable for many experiments,
over thousands of trials this overhead can add tens of
minutes to the experiment duration. Therefore, it is of
great interest to develop faster implementations of the
Y method, especially for generalizations into even more
stimulus dimensions where more particles are needed to
accurately represent the posterior density.

In my implementation of Prior-'Y, I do not
implement the full version implemented by Kujala and
Lukka (2006), which included after each trial a step
where a new set of particles was sampled from the
continuous posterior using Markov-chain Monte Carlo
(MCMC) methods (Gilks, 2005). In many situations, it
may be useful to update the particle filter, since one
well-known limitation of particle-filter approximations
to an evolving posterior density is the fact that as the
experiment progresses, fewer particles #; have proba-
bility p,(0;) substantially greater than 0 (Bengtsson,
Bickel, & Li, 2008; Bickel, Li, & Bengtsson, 2008;
Snyder, Bengtsson, Bickel, & Anderson, 2008). Inves-
tigators in computational statistics (Arulampalam et
al., 2002) have developed a measure to quantify the
number N.g of effective particles in a particle filter,
given by the expression

1

Netr = . (17)

Ny

Zﬁn(oi)z

Supplementary Figure S6 illustrates how Ngg quickly
decreases during the course of the experiments pre-
sented in Figure 4. Although my examples did not
require resampling for accurate estimation, for some
problems it may be useful. The trade-off to consider is

whether the improvement in estimation accuracy
justifies the additional time needed for the MCMC
resampling step, which takes longer as the experiment
progresses, since the likelihood function has more
terms. This decision is clearly dependent on the
particular problem.

Lookup-Y¥
Method description

Another method for potentially speeding up adap-
tive design of psychophysical experiments originates
from a set of ideas developed in the statistics literature,
namely the theory of optimal experimental design
(Chaloner & Verdinelli, 1995; Atkinson et al., 2007).
OED chooses a set of observation points d = {Xi, X»,

.., X,,,} known as a design, which will optimize some
utility function U(d) specifying some desired experi-
mental goal, for instance prediction of new observa-
tions (O’Hagan & Kingman, 1978), model comparison
(Cavagnaro et al., 2010; Cavagnaro, Pitt, & Myung,
2011), or accurate estimation of model parameters
(Lewi et al., 2009). For parameter-estimation problems,
a valid design must include at least as many points as
there are parameter dimensions: For instance, for the
standard 1-D psychometric function shown in Figure
la (which has two parameters), a valid design d = {x,
X>} for estimation must contain two unique stimuli. In
a Bayesian setting, we may formally state the design
problem as finding

d = argmax U(d), (18)
d
where
U(d) = [ [u(d,0,y)p(y|d, 0)po(0)dydo. (19)
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Figure 6. lllustration of the D-optimal designs for estimating the
parameters of the 1-D psychometric function. (a) D-optimal
design d = {x4, x,} (black dots) for true parameters (4, 8) =(0,1)
for the 1-D psychometric function (Equation 2). (b) Conditional
expected utility U(d|0) for the space of two-element designs d =
{x1, x5} for the function in (a). (c) Mapping between
psychometric function parameters and D-optimal designs. Note
that nearby parameter values are mapped to similar designs
(red, green, and blue circles).

Integrating over the possible observations y condi-
tioned on d, 0, we obtain the expression

U(d) = [U(d|0)po(6)db, (20)

where the quantity U(d|0) is the conditional expected
utility of the design d. In general, exact evaluation of
the integrals in Equations 19 and 20 is not analytically
tractable and typically requires use of numerical Monte
Carlo methods (Chaloner & Verdinelli, 1995). OED can
also be implemented sequentially using a greedy
algorithm where only a single stimulus is chosen on
each trial to maximize the expected utility, and in fact
many of the information-theoretic stimulus design
methods in the neuroscience and psychology literature
are simply special cases of sequential optimal design
with expected posterior entropy as the utility function
(Kontsevich & Tyler, 1999; Lewi et al., 2009; DiMat-
tina & Zhang, 2011; Cavagnaro et al., 2010).

The form of Equation 20 suggests a simple heuristic
strategy which I call Lookup-¥ for sequential data
collection in the case where one is representing the
posterior density on a finite set of supports Sg = {0,
0,,...,0y,} and there are a finite number of designs
D={d,, d,, ..., d,} we may present. Assuming that we
have precomputed the conditional expected utility
U(d}|0,) of each design d; for all ;, we can then
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approximate the expected utility of design d; for trial
n+ 1 given our current discrete posterior j,(6;) by
calculating

Ny

Un-&-l(di) = Z U(dj’0i)ﬁn(0i)~ (21)

i=1

This expected utility of each of our possible designs
in D may be computed using a simple matrix
multiplication

qn+1 = Upn? (22)

where U; = U(d|0,), [p,); = p,(0:), and [q,,11]; =
U,11(d)). At each iteration, we present the design which
maximizes the expected utility, i.e., the design corre-
sponding to the largest component of q,,.;. In order to
ensure that there are designs in our set D which are
optimal for the possible states of nature in Sg, prior to
the experiment we precompute for each of the 6; € Sg
the optimal design d; given by

d; = argmax U(d|,). (23)
d

Computing the optimal design for each possible state
of nature yields an Ny X Ny matrix U. However, since a
design which is optimal for a given 0; € Sg is also
nearly optimal for nearby 6, € ©, we can reduce the
dimensionality of the matrix U and thereby speed up
the multiplication in Equation 21 by only including
designs in D for a subset of N, points 0; € ©.

It is important to note that the Lookup-¥ method
differs in several critical respects from previously
proposed methods. In particular, instead of choosing a
new stimulus on every trial like the other methods, it
chooses a set of K=dim(0) stimuli (i.e., a design d € D)
every K trials. Also, the term “lookup” should not be
confused with the precomputation step in the standard
¥ technique, which simply precomputes p(r|x;, 0)) for
all stimuli x; and supports ;. In this context, “lookup”
refers to the fact that for each design in our set, we
precompute the expected utility of that design for each
of the supports in our discrete approximation of the
posterior and store the value in a matrix U which
remains fixed throughout the experiment. Since the
matrix U is defined on the fixed set of supports specified
prior to the experiment, this method may not be as
readily amenable to MCMC resampling as Prior-¥,
due to the need to also update the design set D and the
utility matrix U along with the particles.

In my implementation of the method, I used as my
utility function D-optimality (Atkinson et al., 2007),
which chooses stimuli to maximize the determinant of
the Fisher information matrix. However, many other
choices are possible and commonly used in the OED
literature (Chaloner & Verdinelli, 1995; Atkinson et al.,
2007). Figure 6 concretely illustrates the ideas I have
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Figure 7. The four element D-optimal design (black dots) for
estimating the model of Equation 6 with true parameters 6 =
(-3,1,1,1)".

described for the case of the 1-D psychometric function
(Equation 2). In Figure 6a we see that the D-optimal
design d for estimating the true parameters 61 = (0,
1)—equivalent to A =0, § = 1—is given by the stimuli
X1, X, = =1.54. These stimuli are located at the regions
of the psychometric curve where the change in the
observer’s correct response probability with respect to
each of the parameters is large (Supplementary Figure
S1). We see that these two stimuli are where all of my
implementations of the 1-D W method concentrate
much of their sampling (Figures 3b and 4b), eventually
alternating between these two stimuli as the experiment
progresses. This fact makes sense in light of the fact
that asymptotically, the posterior density becomes well
described by a Gaussian (Kay, 1993), at which point
minimizing the entropy is equivalent to maximizing the
Fisher information determinant (Atkinson et al., 2007).
Indeed, in the original implementation of the ¥
method, as the experiment progressed the stimulus
presentations also alternated between two stimuli
located near regions of their psychometric function
where the response probability had a large change with
respect to the function parameters (Kontsevich &
Tyler, 1999).

Although this design d = {x1, x,} = *+1.54 is optimal
for estimating parameters A=0 and =1, we see from
Figure 6b that nearby designs also have high utility.
This near optimality of nearby designs makes it
possible to compute optimal designs for only a subset
of the Ny particles used to represent the posterior
density, thereby reducing the space and time require-
ments of the lookup-table method. Figure 6c illustrates
for a grid of different parameter values (left panel) the
optimal designs (right panel) for those values. We see
that nearby parameter values map to nearby optimal
designs, which is consistent with the fact that the
mapping between parameter and design space is
smooth and continuous. A derivation of the D-optimal
design for Equation 2 is shown in Figure 6a, and an
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analytical approximation to this design is given in the
Appendix. Similarly, the numerically optimized D-
optimal design for the 2-D psychometric function
(Equation 6) is shown in Figure 7. Note that it
concentrates design points in regions of the psycho-
metric function where the change in response proba-
bility with respect to each of the parameters is high
(Supplementary Figure S3). However, it is important to
remember that the D-optimal design for a set of
parameters is not simply the concatenation of D-
optimal designs for each parameter individually.
Therefore, the D-optimal design in Figure 7 is not
identical to the locations of maxima in Supplementary
Figure S3.

Numerical experiments

I implemented the Lookup-¥ method for 1-D and 2-
D psychometric estimation, obtaining improvements in
estimation accuracy and stimulus placement similar to
those seen in my other implementations (Figure 8). The
Lookup-¥ method was extremely fast, taking only
about 1 ms (0.96 = 0.2 ms, N;as = 2,500) on the 64-bit
Xeon and 3 ms (2.52 = 0.37 ms, Njas = 2,500) on the
32-bit 17 to generate the next (four-stimulus) design for
the 2-D psychometric function with Ny= 5,000 particles
and N, = 1,250 designs. By contrast, the Prior-'¥
procedure with the same number of particles used to
represent the posterior (Ny = 5,000) took nearly 1 s/
stimulus (737 £ 31 ms, Nyjas = 10,000) on the 32-bit
system for estimating this same 2-D psychometric
function. A direct comparison of methods with Ny =
5,000 particles sampled from the same Gaussian prior
demonstrates that the Lookup-¥ method offers a
tremendous speedup over the Prior-¥ procedure (300X
on the 17) without sacrificing final accuracy as
measured by Equation 14 (Prior-¥ error = 0.360 *
0.239; Lookup-¥ error = 0.369 * 0.231, N, = 100).

Laplace-V
Method description

Representing high-dimensional prior and posterior
densities poses a formidable computational challenge
for Bayesian statistical learning. One approach to
efficiently representing the posterior used in previous
studies of adaptive stimulus design for neurophysiology
is to make use of the Laplace approximation (Bishop,
2006; Lewi et al., 2009). I demonstrate here how this
method can be fruitfully be extended to the ¥
procedure.

The basic idea of the Laplace approximation is to
represent the evolving posterior density p,(0) as a
Gaussian centered on the posterior mode u,. As new
observations (X,..1, ,+1) are obtained, the mode and
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Figure 8. Results for the Lookup-¥ method for 1-D and 2-D psychometric functions. Organization is the same as in Figure 3.

covariance estimates are updated until the mode
converges to a final estimate with a sufficiently small
covariance. In the case where the system response
model p(r|x, 0) is Gaussian, one may analytically
compute the new mode u,,,; and new covariance X,
recursively using the Kalman-filter update formulas
(Kay, 1993). However, when the response model is not
Gaussian or cannot be reasonably approximated as one
(for instance, the psychophysical model in Equation 1),
the new posterior mode p,,; cannot be computed
analytically and must be found using numerical
optimization. However, since a single observation
generally does not drastically change the location of the
posterior mode, this optimization is quite fast. Given
the new mode pu,,, |, computation of the covariance X,
is straightforward using the formulas presented in this
section.

Mathematically, the Laplace approximation to the
current posterior density is obtained via the second-
order Taylor expansion around the current mode g, of
the log-posterior:

Inp, (0| D1.) ~ lnpn(”n’Dltn)

0—n)"Z,'(0—p,), (24)

1
2
where

Z;l - _vv()lnpn(”n|Dliﬂ)‘ (25)

and Dy, = {(xy, 1), (X2, ¥2), ..., (X;,, 1p)} 1s all of the
stimulus-response data collected during the first # trials.
Exponentiating both sides of Equation 24 yields a
Gaussian approximation p, centered at m,, with

covariance X, with the entropy of this Gaussian
density given by
H, = %lndet():,,). (26)
In choosing the next stimulus x,,,;, the ¥ method
minimizes the expected entropy of the subsequent
Gaussian posterior p,,1(0|D1.,, F'ni1> Xpi1), Where 1,1 €
{0, 1} is the (unknown) subject response for trial n + 1.
The calculation of p(r|x) = p(r|x, 0)p,(0)d0 is
straightforward and can be accomplished by Monte
Carlo integration. From Equation 26 we see that
computing the entropies H,, (X, r) simply amounts to
calculating the two possible determinants of X, 4,
which we find using
E_l

n+1 — —VV()IHP(V’X, :un) + E;1 (27)

for the cases where r =0 and » = 1. Note that we
evaluate Equation 27 using the current posterior mode
I, which is a reasonable approximation assuming that
successive posterior modes are nearby. Applying this
method to the generic multivariate regression model
(Equation 9), we readily compute

—VV91HP(V|X, ”n) = GI(XT”n)XXT' (28)

One question which arises when using the Laplace
approximation is whether it is reasonable to approxi-
mate the posterior density by a single Gaussian bump,
as such a representation would be inappropriate for a
density with multiple peaks. However, it is simple to
show that for the logistic regression model, the
likelihood is log-concave (Pratt, 1981), and hence with

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/j our nals/j ov/934201/ on 06/29/2017



Journal of Vision (2015) 15(9):5, 120

a

DiMattina 12

Stimulus

| D
N\ — Lap-y

Error

0.8
0.6
0.4
0.2

Stimulus

Stimulus

100

Figure 9. Results for the Laplace-¥ method for 1-D and 2-D psychometric functions. Organization is the same as in Figure 3.

a log-concave prior (i.e., a Gaussian, Laplace, or flat
prior) the posterior cannot have more than one
maximum. For psychometric functions where the
likelihood does not enjoy log-concavity (for instance,
those defined using multiple-layer neural networks), the
Laplace-¥ method may be inappropriate, and other
methods like particle filters (Carpenter et al., 1999) or
Gaussian-sum approximations of the posterior (Al-
spach & Sorenson, 1972; DiMattina & Zhang, 2011)
may be more suitable. Another potential issue is that
this method assumes a small change between successive
posterior modes, which is reasonable if enough data
have been collected but is unlikely to be the case early
on in the experiment. Nevertheless, I found the method
to work quite well in my examples, and previous work
has successfully applied the Laplace approximation
method to estimating neural receptive fields (Lewi et
al., 2009).

Numerical experiments

I implemented the Laplace-¥ algorithm for 1-D and
2-D psychometric functions (Equations 2 and 6) to
permit comparisons with the methods presented
previously (Figure 9). I used the same true parameters
01 and discrete stimulus search grid as the other
examples (L =21 evenly spaced stimuli on [0, 5] in the
2-D case), and defined my initial prior with gg = (—1,
0.5,0.5, 0.5)T and Xy=2 - I. I found that the Laplace-¥
procedure was extremely fast, taking only about 20 ms
(18.83 £ 1.88 ms, Nas = 10,000) to choose the next
stimulus on the 32-bit Intel i7 for the 2-D psychometric

function. In my implementations, due to the relatively
low dimensionality of the parameter space (4-8
dimensions), I made use of the MATLAB/Octave
command fminunc.m (supplied with gradient and
starting from u,,) to update the posterior mode and
found this to be fast (15.69 *+ 2.91 ms, N =100) for the
highest dimensional examples I analyzed.

Efficiency of OED methods

All of the implementations discussed so far provide a
tremendous advantage over the method of constant
stimuli (IID sampling from a grid) in terms of greatly
reducing the number of trials needed to reach a desired
value of the expected square error or entropy. We can
define the trial speedup factor for each method as
follows: Given a final expected squared error E;;,
(Equation 14) obtained by IID stimulus presentation
after NV trials, we define the trial speedup factor S =
N/Neq, Where N, 1s the number of trials needed on
average to reach the criterion error Ej;;. This factor tells
us how many times faster OED methods are than 11D
methods for attaining the same accuracy. Supplementary
Figure S7 plots this speedup factor for all of the methods
for the case of the 2-D psychometric function (Equation
6). We see that for this particular example, each of these
methods is about 3.5-4.5 times more efficient than 11D
sampling in terms of the savings in number of stimulus
presentations. Clearly, the degree benefit obtained by
adaptive stimulus optimization methods will in general
be dependent on the particular problem. Therefore, the
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Figure 10. Stimulus optimization in discrete and continuous spaces for a psychometric model with a 3-D stimulus space. (a)
Optimizing stimuli in a continuous 3-D space (red curve) results in more accurate parameter estimates with less posterior entropy
when compared with optimization on a grid (blue). (b) Accurate estimation of interaction terms with continuous stimulus
optimization (blue symbols) compared with random stimuli (yellow symbols). (c) Final estimation error (Equation 14) for various
stimulus optimization strategies. “Win” stands for an approach where the stimulus set is periodically winnowed to eliminate stimuli
of low expected utility. We see that all OED methods vastly improve accuracy, and continuous stimulus optimization yields the most
accurate estimates. (d) Time for various stimulus-space searching methods, averaged across the experiment. We see that continuous

stimulus optimization is the most efficient in this example.

results presented here in the context of a few specific
examples provide an existence proof that such methods
may be useful in some situations.

Nonlinear interactions of multiple cues
Investigating nonlinear cue combination

For many sensory quantities, there are often several
cues which can give estimates of those quantities. For
instance, one can estimate the tilt of a surface in depth
from both texture and stercoscopic cues (Knill &
Saunders, 2003; Hillis et al., 2004). Similarly, in natural
vision multiple cues can be used for segmenting surfaces
or detecting occlusions (Figure 1), including texture,
luminance, and color (Konishi, Yuille, Coughlan, &
Zhu, 2003; Martin, Fowlkes, & Malik, 2004; Ing et al.,
2010; DiMattina et al., 2012). A large body of work in
sensory psychophysics has considered what the optimal
strategy is for combining multiple cues when estimating
a sensory quantity. However, most of this work has
focused on testing if subjects combine cues linearly in an
optimal manner (Trommershauser et al., 2011). In

general, there is no reason why perceptual cues should
necessarily be combined in a linear manner, and in fact
recent computational work suggests that linear cue
combination is actually suboptimal for integrating
information from different color channels (Zhou & Mel,
2008). Studying nonlinear cue combination for complex
stimuli defined by multiple parameters necessitates the
use of high-dimensional models like Equation 9.

In order to investigate the potential utility of the
Laplace-¥ method for 3-D cue-combination experi-
ments, | considered estimating the true parameters 6=
(-4,1,1,0.5,0,1,0, )T of the eight-parameter model
(Equation 6) defined on three-dimensional stimuli x =
(x1, X2, x3)". In this hypothetical example, stimulus
feature x3 interacts multiplicatively with stimulus
feature x;, and therefore it is inappropriate to assume
linear cue combination. Our stimulus space is a discrete
3-D grid with L = 21 levels uniformly spaced on [0, 4],
for a total of (21)*> = 9,261 possible stimuli. Our
Gaussian prior had mean py = (0, 0.5, 0.5, 0.5, 0, 0, 0,
0)" and covariance £y =2 - L

We see from Figure 10a that there is a substantial
improvement in performance when compared to 11D

Downloaded From: http://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/j our nals/j ov/934201/ on 06/29/2017



Journal of Vision (2015) 15(9):5, 120

Expected Info Gain

—_~

X

N

%)

=)

S

£ -6

=

wn -7
-8
-9

10 20 30 40 50
Iteration

Figure 11. Evolution of the expected information gain (plotted
on log scale) for a run of the 1-D Grid-¥ method. Note that as
the experiment progresses, fewer stimuli have substantial
expected information gain.

sampling, and furthermore the nonlinear interaction
terms are more accurately recovered (Figure 10b). We
find that as in the 2-D simulations with a nonlinear
interaction term 0, (Figure 3), many of the stimuli
chosen by the W procedure lie on the diagonals of the
stimulus space (Supplementary Figure S8). This dem-
onstrates the crucial importance of covarying stimulus
features when their perceptual interactions are nonlin-
ear. I found that when searching over the full grid of N
=9,261 stimuli for the stimulus maximizing Equation
13, stimulus selection times were somewhat slow
(Xeon-64: 827 £ 5 ms, Nyjas = 25,000) due to the large
number of function evaluations needed. I now dem-
onstrate two possible ways to speed up the stimulus
selection times.

Speeding up implementation

As one moves into higher dimensions, it may not be
feasible to evaluate the expected information gain
(Equation 13) on a grid of all possible combinations of
stimulus values, as the function evaluations grow
exponentially as L”, where L is the number of levels per
dimension and D is the dimensionality. Therefore, one
may wish to reduce the number of function evaluations
by either optimizing Equation 13 on a continuous
stimulus space or periodically winnowing the stimulus
space so that only stimuli which have had high utility
over past trials are retained. The justification for this
winnowing of the stimulus space is that as one learns
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more about the true parameters of the system, fewer
stimuli are potentially useful for refining one’s estimate.
The expected information gain (normalized by the
current entropy) is illustrated in Figure 11 for the 1-D
psychometric function (Equation 2), and we see that as
the experiment progresses, fewer stimuli have high
expected utility, with the algorithm eventually alter-
nating between the two points (*1.54) which comprise
the D-optimal design for the true system parameters
(Figure 6a).

We see in Figure 10 that optimizing over a
continuous stimulus space and periodic winnowing by
rank-ordering stimuli’s expected information gain
(eliminating the bottom 25% of stimuli every 25 trials)
both offer substantial reductions in stimulus selection
time compared to searching over the 3-D grid of stimuli
as in the standard implementation of the W method
(Figure 10d). Furthermore, we see for this example that
the final parameter estimates obtained are more
accurate (continuous optimization) or no less accurate
(stimulus-space winnowing) than full-grid search (Fig-
ure 10a through d).

Summary of contributions

In recent years, there has been renewed interest in
applying adaptive stimulus generation methods to
study of sensory processing (Benda, Gollisch, Machens,
& Herz, 2007; Paninski, Pillow, & Lewi, 2007;
DiMattina & Zhang, 2013). However, with a few
exceptions (Kujala & Lukka, 2006; Lesmes et al., 2010;
Kim et al., 2014), adaptive stimulus generation
methods which have been applied to psychophysical
experiments have primarily focused on estimating or
comparing low-dimensional models (Watson & Pelli,
1983; Kontsevich & Tyler, 1999; Prins, 2013b). In this
methodological study, I present a detailed analysis of
three implementations of the popular ¥ algorithm
which generalize well to estimating multidimensional
psychometric models. Two of these methods (Lookup-
Y and Laplace-¥), to the best of my knowledge,
represent novel approaches to psychophysical studies.
Developing such efficient implementations for multi-
dimensional experiments is particularly timely, as much
recent effort has been focused on the problem of
quantitatively describing how subjects combine multi-
ple cues (for instance, combining cues to detect
occlusion edges as in Figure 1) when making perceptual
decisions (Landy & Kojima, 2001; Ernst & Banks,
2002; Koérding & Wolpert, 2004; Ing et al., 2010;
Saarela & Landy, 2012). When cues are combined in a
nonlinear manner (Saunders & Knill, 2001; Frome et
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al., 1981; Zhou & Mel, 2008), it becomes necessary to
covary multiple stimulus parameters simultaneously in
order to understand how they are integrated, and
psychometric models for characterizing these interac-
tions become more complex and harder to estimate.

Since the current study is methodological rather than
intending to propose specific models of nonlinear cue
combination (which will depend on the particular task
being investigated), I demonstrate my implementations
of the W algorithm using a generic multivariate linear
regression model (Equation 9) which readily generalizes
the univariate model (Equation 2) commonly used in
psychophysics (Kingdom & Prins, 2010). However,
even with these generic models we readily observe the
crucial importance of covarying parameters which
interact in a nonadditive manner in order to accurately
characterize their interaction (e.g., Figure 3), with
numerous stimuli placed on the diagonals of the
stimulus space for nonzero multiplicative interaction
terms. In contrast, I found that for purely linear cue-
combination rules, the ¥ method places stimuli entirely
along the cardinal axes of the stimulus space
(Supplementary Figure S3). This finding validates the
standard procedure of characterizing perceptual sensi-
tivity to each parameter dimension individually in cases
of linear cue combination (Hillis et al., 2004).

Overview of methods

Broadly speaking, one may divide these procedures
into methods that are based on a particle-filter
representation of the posterior (Grid-¥, Prior-¥, and
Lookup-¥) and a Laplace approximation to the
posterior (Laplace-¥). In general, for models defined in
lower dimensional parameter spaces (4-10 parameter
dimensions), the particle-filter methods (Prior-¥ and
Lookup-¥) are perfectly suitable, and indeed may be
preferable for models whose posterior density is poorly
approximated by a Gaussian. The Prior-¥ method
provides perhaps the most straightforward approach to
making the W algorithm tractable in higher dimensions,
and in contrast to the other methods I analyze here, it
has been previously implemented in psychophysical
studies (Kujala & Lukka, 2006). However, there are
two potentially serious limitations to the particle-filter
methods which merit discussion. The first limitation is
that as the number of particles Ny used to represent the
posterior density grows, the time required by the Prior-
Y procedure to generate the next stimulus can become
experimentally inconvenient.

The second general limitation of particle-filter
methods is that as the experiment progresses, the
number of particles having probability significantly
greater than 0 declines rapidly (Supplementary Figure
S4; see also Bengtsson et al., 2008; Bickel et al., 2008;
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Snyder et al., 2008). This can be problematic because
an inaccurate representation of the posterior may make
the integration over the posterior (Equation 15)
required by the ¥ method unreliable. This problem can
be rectified by periodic resampling of the posterior
using MCMC methods (Gilks, 2005), but doing so can
add time to the experiment. In the examples analyzed
here, resampling was not necessary to obtain accurate
parameter estimates, but a systematic investigation of
MCMC resampling in the context of the methods
analyzed in this paper is certainly an interesting avenue
for future research. A strategy which has been used in
previous work replaces MCMC simulation from a prior
density with representation of the posterior density on
adaptive sparse grids (Kim et al., 2014). This method
has been shown to scale well with dimensionality in
studies of econometric models (Heiss & Winschel, 2008;
Winschel & Kritzig, 2010) and may provide a better
approach to adaptively updating the particle filter than
standard simulation-based methods.

I present a novel lookup-table approach making use
of precomputed optimal stimuli and demonstrate that
this method potentially offers a tremendous speedup
over other particle-filter approaches to OED (i.e.,
Prior-¥), with no detrimental effects on estimation
accuracy in my examples. Like all particle-based
methods, it suffers from potential degeneration of the
particle filter to a small number of effective particles as
the experiment progresses (Bengtsson et al., 2008;
Bickel et al., 2008; Snyder et al., 2008). However,
assuming that the set of permissible designs D = {d|,

.., d,,,} remains fixed throughout the experiment, it
should not be too time consuming upon resampling a
new set of particles (much smaller the initial sample
from the prior) to recompute the utility U(d|0) of each
design in D for each particle, particularly if the design
set is winnowed to exclude designs of low expected
utility as the experiment progresses. Furthermore,
given a particle 0;, for many models it may be possible
to analytically compute an approximately optimal
design (see Appendix). The Lookup-¥ method is O(N,
- Ny) and demonstrates a substantial improvement over
the O(N, - Ny) Prior-¥ method for an identical number
Ny of supports (for N; < Ny), and 1 suggest that this
method may be a powerful substitute for Prior-¥ in
situations where a large number of particles is needed
to accurately represent the posterior density, thereby
making Prior-Y¥ intractable. Further exploration of this
approach is potentially of great interest to researchers
in statistical learning as well as in cognitive sciences.

Given the well-known limitations of particle filters in
high-dimensional spaces (Snyder et al., 2008), imple-
mentations of OED for high-dimensional psychometric
models may be best suited for a parametric represen-
tation of the posterior density by analytical forms.
Indeed, this has been the approach taken by investi-
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gators in computational neuroscience, who have used
either Laplacian approximation methods (Lewi et al.,
2009) or sum-of-Gaussians representations (DiMattina
& Zhang, 2011) to represent evolving posterior
densities. Making use of the log-concavity properties of
the likelihood for many of the sigmoidal forms used in
psychophysical research (Pratt, 1981), I demonstrate
the potential utility of the Laplace approximation for
experiments on nonlinear cue combination, which can
give rise to models like Equation 9 with many more
parameter dimensions than models typically used in
psychophysical experiments (Figure 10; Kingdom &
Prins, 2010). I discuss potentially fruitful applications
of the Laplace-¥ method to other kinds of perception
and neuroscience experiments later.

Limitations of the present study

The fundamental limitation of this and any meth-
odological study is that these algorithms are illustrated
on a particular choice of models with particular
assumptions about the stimuli, and therefore the
benefits attained may be to some extent example
dependent. Therefore, we should take the results
presented here as providing an existence proof that
such methods may be of benefit in some experiments,
without claiming that they will necessarily be of benefit
in all cases. Furthermore, for low-dimensional exper-
iments (i.e., 1-D stimulus space), the standard imple-
mentation of Grid-Y¥ (available in a MATLAB
implementation at http://www.palamedestoolbox.org/)
can easily choose stimuli quickly enough to be
absorbed into a reasonably short interstimulus interval.

In this study, I presented three methods based on a
discrete approximation of the posterior and one
method based on a continuous approximation. Direct
comparison between methods is difficult, since the I1D
case differs across each method. One comparison which
I did make was to show that a relatively small number
of particles sampled from a uniform prior (Prior-')
allowed reasonably fast computation with little differ-
ence in final estimation error. I also demonstrated that
for the same number of particles sampled from an
identical prior, Lookup-¥ was faster than Prior-¥
without sacrifice in estimation accuracy. It was not the
main goal of this paper to compare methods to each
other but simply to define the methods, provide code
for their implementation, and demonstrate that each
potentially offers substantial improvement over the
standard implementation of the Grid-¥ method. In
general, I feel that the Laplace-¥ method is the best bet
for generalization to higher dimensions, and prelimi-
nary results with simulated psychophysical estimation
problems in even higher numbers of dimensions (tens of
dimensions) have been promising. However, even the
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Laplace-¥ method runs into computational limitations
as the number of observations increases, since evalu-
ations of the likelihood become more costly as the
experiment progresses.

Another limitation of the current work is that I did
not consider estimation of the lapse rate. Previous
studies have demonstrated that it may be important to
estimate the lapse rate in order to get an accurate
estimate of other parameters (Wichmann & Hill, 2001;
Prins, 2012). In this study, I did not consider this
problem, although it would be fairly straightforward to
augment the parameter space and include the lapse
rate.

Finally, a very important problem pertinent to any
Bayesian approach that was not considered in this
work is the issue of prior specification. One recent
suggestion which has been shown to be highly effective
in simulated psychophysical studies is to do hierarchi-
cal Bayesian modeling, where data from previous
subjects is used to specify the prior for subsequent
subjects (Kim et al., 2014). In this approach, param-
eters for the prior are specified by a hyper-prior,
transforming the problem into that of specifying this
hyper-prior. This innovative data-driven approach
suggests a principled way to specify priors, and future
experimental work along these lines to validate this
approach should be pursued.

Future directions

As computational approaches become increasingly
important in psychophysics and cognitive science, there
are several important extensions of this work worthy of
future investigation. In the present study, I considered
the problem of how one can extend the popular ¥
method in order to efficiently estimate the parameters
of higher dimensional psychometric models. The
motivation for doing so is to develop methods which
will permit us to estimate models of nonlinear visual
cue combination (Figure 1). However, the appropriate
nonlinear model to use is often unknown prior to
experimentation, necessitating the fitting and compar-
ison of multiple models (Pitt & Myung, 2002; Pitt,
Myung, & Zhang, 2002; Myung & Pitt, 2009). Recent
studies have developed adaptive stimulus optimization
techniques for the goal of model comparison (Wang &
Simoncelli, 2008; Cavagnaro et al., 2010; DiMattina &
Zhang, 2011), and these have been applied experimen-
tally in both human (Wang & Simoncelli, 2008;
Cavagnaro et al., 2011) and animal (Tam, 2012)
experiments. A very interesting direction for future
research is to develop algorithms which combine the
experimental goals of model estimation and compari-
son. One approach suggested by DiMattina and Zhang
(2011) and implemented by Tam (2012) is to simply run
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experiments in two phases: an estimation phase (E-
phase), where stimuli optimized for each model are
presented alternately, and a comparison phase (C-
phase), where stimuli optimized for comparing models
are presented. However, this is certainly not the only
possibility, and it may be desirable to present stimuli
which are optimized simultaneously for multiple
experimental goals (Sugiyama & Rubens, 2008). This
idea remains an open avenue for future research.

Most psychophysical and neurophysiological studies
make use of parametric stimuli defined in low-
dimensional spaces, for instance a bar of light or
sinusoidal grating with a given orientation and spatial
frequency (De Valois & De Valois, 1988). The
responses elicited by these stimuli are used to estimate
simple models having only a few parameters, like
tuning curves or psychometric functions. However, an
alternative approach to studying sensory systems which
has gained a lot of traction in the neuroscience
literature is the system-identification approach (Wu et
al., 2006), where high-dimensional stimuli (up to
hundreds of dimensions) are defined in a space
corresponding to the activities of peripheral receptors
for the modality in question (i.e., pixel space in vision).
Similarly motivated experiments have been performed
in the psychophysical literature in order to determine
the perceptual filters that subjects use to detect a target
or determine the position of a target in a noisy
background (Ahumada, 1996; Minecault et al., 2009;
Murray, 2011). It is of great interest for future work to
see if adaptive stimulus generation methods, in
particular the Laplace-¥ method, can be fruitfully
extended to high-dimensional psychophysical system-
identification studies analogous to the application of
such methods to neurophysiology (Lewi et al., 2009;
DiMattina & Zhang, 2011). Along these same lines,
another question is whether one can effectively use
these methods to identify models of how neural
populations are decoded by observers to make per-
ceptual decisions. For instance, given a simulated (or
simultaneously recorded) population of dozens or even
hundreds of orientation-tuned neurons, can we learn a
set of linear decoding weights which accurately predict
subject performance in an orientation discrimination
task (Berens et al., 2012)? This question is of great
interest for future research.

Keywords: adaptive stimulus generation, psychophys-
ical methods, computational modeling
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Here I present the derivation of the D-optimal
design for estimating the univariate psychometric
model (Equation 2), along with an analytical ap-
proximation to this design. The D-optimal design d =
{x1, x5} is the set of observations which maximize the
determinant of the Fisher information matrix, given
by

IF(d, 0) = ip(x1,0) + iF(XQ, 0), (29)
where
ir(x,0) = (—%lnp(r\x, 0)),. (30)

Assuming two possible subJect responses (r =0, 1),
we have p(r = 1|x, 8) = 6(0"x) =7 and p(r =0|x, 0)— 1 —
n, where we use the 51mp11fy1ng notation x = (1, x)".
Applying the definition in Equation 30, it is simple to
show that

ir(x,0) = o' (x"0) [)lc xz} (31)

and therefore

/7 1 X /7 1 X
Ix(d, 0) = o' (x]0) [x x;} +d'(x30) [xz %}

1 1
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A little algebra shows that

de:t(Ip(d7 0)) = o0 (x1 — X2)7, (33)

where o = o (x] 0) and op = a (x30). Equatlon 33 is the
function plotted in Figure 6b for 6 = (0, 1)".

It is not possible to analytically solve Equation 33
for the optimal design d*, due to the presence of
transcendental functions, but using the (4, ) param-
etrization (Equation 4) and making some approxima-
tions allows us to solve analytically for an
approximately D-optimal design. To see this, assume
that the solution is symmetric about the threshold 4, so
that x; = 4+ v and x, = 4 — v. Substituting into
Equation 33 and using the parameterization (Equation
4) yields

- 4(0’([3\)))2\;2, (34)

where we make use of fact that ¢'(—u) = o’'(u). Since
det(Zg(v)) >0, we can instead optimize

detlg(v)

v

H(V) = detIF(V) = HTsh(ﬂv)’ (35)
making use of the identity
1 1
o'(u) = (36)

2 1+ cosh(u)’
Differentiating Equation 35 and setting it equal to 0
yields
1
cosh(fv)

For small arguments, we have cosh(u) ~ 1 and
tanh(u) =~ u, yielding the final result

+ 1 = pvtanh(fv). (37)

vV=—o. (38)

For the example shown in Figure 6a with (4, ) =
(0 1), this gives us an approximate optimal design of
d" = {+1.41}, which is reasonably close to the
numerically computed D-optimal design " = { *1.54}.
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