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Segmenting surface boundaries 
using luminance cues
Christopher DiMattina1* & Curtis L. Baker Jr.2

Segmenting scenes into distinct surfaces is a basic visual perception task, and luminance differences 
between adjacent surfaces often provide an important segmentation cue. However, mean luminance 
differences between two surfaces may exist without any sharp change in albedo at their boundary, but 
rather from differences in the proportion of small light and dark areas within each surface, e.g. texture 
elements, which we refer to as a luminance texture boundary. Here we investigate the performance 
of human observers segmenting luminance texture boundaries. We demonstrate that a simple model 
involving a single stage of filtering cannot explain observer performance, unless it incorporates 
contrast normalization. Performing additional experiments in which observers segment luminance 
texture boundaries while ignoring super-imposed luminance step boundaries, we demonstrate 
that the one-stage model, even with contrast normalization, cannot explain performance. We then 
present a Filter–Rectify–Filter model positing two cascaded stages of filtering, which fits our data 
well, and explains observers’ ability to segment luminance texture boundary stimuli in the presence 
of interfering luminance step boundaries. We propose that such computations may be useful for 
boundary segmentation in natural scenes, where shadows often give rise to luminance step edges 
which do not correspond to surface boundaries.

Detecting boundaries separating distinct surfaces is a crucial first step for segmenting the visual scene into 
regions. Since different surfaces generally reflect different proportions of the illuminant, luminance differ-
ences provide a highly informative cue for boundary detection in natural  images1–4. Inspired by physiological 
 findings5, 6, a commonly assumed computational model of luminance boundary detection is a Gabor-shaped 
linear spatial filter of appropriate spatial scale and orientation (or a multi-scale population of filters) detecting a 
localized change in luminance near the  boundary4, 7 (Fig. 1a,b). However, in many natural scenes, two distinct 
surfaces may visibly differ in their mean regional luminance without giving rise to any sharp change in luminance 
at their boundary. This situation is illustrated in Fig. 1d, which shows two juxtaposed textures from the Brodatz 
 database8. Clearly, a large-scale Gabor filter defined on the scale of the whole image as in Fig. 1a can certainly pro-
vide some information about a difference in average luminance between the two surfaces. However, it is unknown 
whether other mechanisms may be better suited to detect regional luminance differences at such boundaries. 

In order to address this question, we propose a basic taxonomy of two different ways that luminance cues 
can define region boundaries. Luminance step boundaries (LSBs) are defined by uniform regional differences in 
luminance, as in Fig. 1a. Luminance texture boundaries (LTBs) are defined by differing proportions of dark and 
light texture elements or micropatterns on two adjacent surfaces (Fig. 1c). Note that for the artificial LTB shown 
in Fig. 1c there are no textural cues present other than the proportions of dark and light elements on each side 
of the boundary. Given that regional luminance differences can arise from either LSBs or LTBs, it is of interest 
to understand whether or not similar mechanisms are employed when segmenting these boundaries, and how 
LTBs and LSBs interact when both are present, as for example when a cast shadow falls upon a scene region 
containing one or more surface boundaries.

A number of studies have investigated detection of “first-order” luminance step  boundaries7, 9–11, as well as 
detection and segmentation of “second-order” texture boundaries having no luminance difference but differences 
in texture  contrast12, 13,  density14,  orientation15,  polarity16 or  phase17. However, the segmentation of first-order 
luminance texture boundaries, and the underlying computations, are poorly understood.

In this study, we characterize perceptual segmentation of LTBs (Experiment 1) and demonstrate that simple 
regional luminance difference computation cannot readily explain their segmentation (Experiments 2, 3). We 
demonstrate the robustness of LTB segmentation to variations in contrast of texture elements, and demonstrate an 
excellent fit to the data with a psychometric function incorporating divisive contrast normalization (Experiment 
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3). We show that when both cues are present, observers can ignore masking LSBs having orthogonal orienta-
tions when segmenting LTBs using proportion of imbalanced patterns as a segmentation cue (Experiment 4). 
However, the presence of a masking LSB having a congruent orientation with the target LTB can in some cases 
enhance or impair performance (depending on relative phase), suggesting some degree of pre-attentive interac-
tion between cues.

We test the ability of a simple model positing a single stage of filtering which fit the data well in Experiments 2, 
3, but it fails to fully explain the results of Experiment 4, suggesting that LTBs and LSBs are segmented by distinct 
underlying mechanisms. We define and fit a “filter-rectify-filter” (FRF) model positing two stages of filtering to 
data from Experiment 4, and show that this model successfully accounts for observer performance in the task. 
Previous studies of second-order vision have fit psychophysical data with FRF  models13, 14, 18, but here we show 
that the FRF model can also account for the ability of observers to extract first-order (luminance) information in 
the presence of masking LSB stimuli. We propose that such mechanisms may be useful for performing boundary 
segmentation in natural vision, where extraneous stimuli such as shadows often give rise to LSB stimuli which 
do not correspond to surface boundaries.

Methods
Stimuli. Luminance texture boundaries. Luminance texture boundary (LTB) stimuli were created by plac-
ing different proportions of non-overlapping black (B) and white (W) micropatterns on opposite halves of a 
circular disc, with the boundary separating the two regions oriented left (L)-oblique (− 45° w.r.t. vertical) or 
right (R)-oblique (+ 45° w.r.t. vertical), as shown in Fig. 2a. The proportion of black vs. white micropatterns on 
each side of the LTB was parameterized by the proportion πU of "unbalanced" micropatterns on each side of the 
disc (i.e., those not having an opposite side counterpart of the same luminance polarity). Note that πU can range 
from 0 (indicating an equal number of black and white micropatterns on both sides) to + 1 (opposite colors on 
opposite sides).

For the experiments described here, we employed a 256 × 256 pixel stimulus subtending 4° visual angle (dva). 
An equal number (16, 32 or 64) of non-overlapping micropatterns were pseudo-randomly placed on each side 
of the boundary, with each micropattern being an 8 pixel Gaussian (σ = 2 pixels). Overlap was prevented by 

Figure 1.  Boundaries without luminance step edges. (a) A luminance step boundary (LSB) and a simple 
detection model in which a linear Gabor filter measures the regional luminance difference. (b) Model similar 
to that in (a) where the LSB is analyzed by multiple Gabor filters at varying spatial scales. (c) Example of 
luminance texture boundary (LTB). The luminance difference is defined by differing proportions of black and 
white micropatterns on each side of the boundary, with no sharp luminance change at the boundary. (d) Two 
juxtaposed textures from the Brodatz database. Although there is clearly a regional difference in luminance, 
there is no sharp luminance change at the boundary.
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sequential placement of micropatterns during stimulus generation, using an iteratively updated map of loca-
tions which already contained micropatterns, making these locations unavailable for new patterns. Unless oth-
erwise specified, the micropattern maximum amplitude A was set to ± 0.25 (W/B) dimensionless luminance 
units with respect to the gray mid-point (0.5), so these micropatterns were clearly visible. Michelson contrast 
cM = (Lmax − Lmin)/(Lmax + Lmin) of the LTB stimuli is related to the maximum micropattern amplitude A by 
cM = 2A . In some experiments, we set A = ±0.1 (roughly 3–4 times LTB contrast detection threshold) to create 
a more difficult task due to reduced visibility of the micropatterns. The Michelson contrast varies with A , but 
does not vary with πU or the number of micropatterns ( np ). Note that the overall RMS contrast, defined as the 
ratio of standard deviation to mean intensity, varies with A and np , but not with πU . This is because the overall 
number of B and W micropatterns are equal and do not vary with πU , which only determines their relative 
prevalence on opposite sides of the boundary. The B and W micropatterns deviate from the gray mid-point by 
the same amount, but in opposite directions, so that the overall mean equals the gray mid-point ( 0.5 ), and the 
standard deviation (and hence RMS contrast) is proportional to A√np.

Stimuli were designed to have zero luminance difference across the diagonal perpendicular to the region 
boundary (anti-diagonal), so that the only available luminance cue was that across the boundary defining the 
stimulus. For each stimulus we randomized which half of the disc was brighter, which is equivalent to a random 
180° rotation of the stimulus. We can also conceptualize which side is brighter as being a function of the phase (0° 
or 180°) of a periodic modulation of the luminance by an odd-symmetric square wave centered on the boundary.

Luminance step boundaries. We also characterized performance on our identification task with luminance step 
boundary (LSB) stimuli, like that shown in Fig. 2b. LSB stimuli, produced by multiplying an obliquely oriented 
step edge by a cosine-tapered circular disc, were also 256 × 256 pixels and scaled to subtend 4 dva. The detect-
ability of this edge was varied by manipulating its Michelson contrast cM , and again which half was brighter 
(luminance modulation phase) was randomized on each trial.

Observers. Two groups of observers participated as psychophysical observers in these experiments. The 
first group consisted of N = 3 observers who were highly experienced with the segmentation tasks. One of these 

Figure 2.  Stimulus images. (a) Examples of luminance texture boundary (LTB) stimuli used in this study, 
shown for varying densities (16, 32, 64 micropatterns on each side of boundary) and proportion unbalanced 
micropatterns ( πU = 0.2, 0.4, 0.6, 0.8). For all of these example stimulus images, the boundary is right oblique. 
(b) Luminance step boundary (LSB) stimulus. (c) Stimulus image examples with LTB and LSB having the same 
orientation (congruent), either phase-aligned (con-0) or opposite-phase (con-180). (d) Example image having 
superimposed, orthogonal (incongruent) luminance texture (right-oblique) and luminance step (left-oblique) 
boundaries (inc).
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observers was author CJD, and the other two (KNB, ERM) were undergraduate members of the Computational 
Perception Laboratory who were naïve to the purpose of the experiments. The second group was comprised of 
N = 13 naïve, inexperienced observers recruited from undergraduate FGCU Psychology classes, as well as N = 1 
initially inexperienced lab member. All observers had normal or corrected-to-normal visual acuity. All observ-
ers gave informed consent, and all experimental procedures were approved by the FGCU IRB (Protocol number 
2014-01), in accordance with the Declaration of Helsinki.

Visual displays. Stimuli were presented in a dark room on a 1920 × 1080, 120 Hz gamma-corrected Dis-
play++ LCD Monitor (Cambridge Research Systems LTD) with mid-point luminance of 100 cd/m2. This moni-
tor was driven by an NVIDA GeForce GTX-645 graphics card, and experiments were controlled by a Dell Opti-
plex 9020 running custom-authored software written in MATLAB making use of Psychtoolbox-3  routines19–21. 
Observers were situated 133 cm from the monitor using a HeadSpot chin-rest.

Experimental protocols. Experiment 1: Segmentation thresholds for LTBs and LSBs. Towards the larger 
goal of determining whether the two kinds of luminance boundaries (LTB, LSB) are segmented using the same 
mechanisms, we started by characterizing observers’ segmentation thresholds for both kinds of stimulus. In 
this and subsequent experiments, the psychophysical task was a single-interval classification task, in which the 
observer classifies a single displayed stimulus as belonging to one of two categories: left- or right- oblique (L/R-
oblique).

To study the effects of the number of unbalanced micropatterns on segmentation (Experiment 1a), lumi-
nance texture boundaries with 32 micropatterns on each side were presented at nine evenly spaced values of πU 
from 0 to 1 in steps of 0.125—example stimulus images are shown in Fig. 2a. A discrete set of values for πU was 
necessitated by the need to have a whole number of micropatterns, which was further restricted to be a multiple 
of 4 to ensure equal numbers of micropatterns in each quadrant. Observers performed 250 psychophysical tri-
als starting at the highest level, with the stimulus level being adjusted using a standard 1-up, 2-down staircase 
procedure, focusing trials near stimulus levels yielding 70.71% correct  responses22. Pilot studies with N = 3 
experienced observers (CJD, ERM, KNB) showed similar thresholds for 32 and 64 micropatterns, and somewhat 
higher thresholds for 16 micropatterns (Supplementary Fig. S1), justifying the use of 32 micropatterns as our 
default micropattern density. LSBs were defined by their Michelson contrast cM with respect to the luminance 
midpoint. LSBs were presented at Michelson contrasts in 11 logarithmic steps from cM =10−2.7 to  10−1.7, using 
the same staircase procedure (Experiment 1b) for 250 trials.

Naïve and inexperienced observers tested in Experiment 1 first obtained experience with segmenting both 
kinds of boundaries over two training sessions prior to the experiment. During the first training session, they 
ran two full threshold series for segmenting both LTBs ( πU cue) and LSBs ( cM cue). During the second training 
session, they ran one more series for both cues. Immediately after the second training session, they ran a final 
(4th) threshold series to estimate stimulus levels for each cue leading to JND (75% correct) performance.

Experiment 2: LTBs with constant luminance difference. In order to test the hypothesis that the key variable 
determining LTB segmentation performance is luminance difference, we generated a series of LTB stimuli hav-
ing constant luminance difference arising from a fixed number (N = 8) of unbalanced (opposite color) micropat-
terns on opposite sides of the boundary. By adding an equal number of luminance-balanced micropatterns (i.e. 
having the same color) to both sides of the boundary (N = 0, 8, 16, 24, 32), we decreased the proportion of unbal-
anced micropatterns, making the boundary more difficult to segment, while maintaining constant luminance 
difference across the boundary. Examples of such stimulus images with 0, 16 or 32 additional balanced pairs of 
micropatterns are illustrated in Fig. 5a.

Experiment 3: Segmenting LTBs with varying RMS contrasts. In order to test further whether total luminance 
difference was a strong predictor of LTB segmentation performance, we repeated Experiment 1 for a single 
density (32 micropatterns per side) while varying the maximum luminance A of each micropattern with respect 
to the screen mid-point luminance (0.5). This was accomplished by setting the maximum amplitude of each 
micropattern to three different levels with respect to the mid-point. W/B micropattern amplitudes were set at 
A = ± 0.1, ± 0.25, ± 0.4 with respect to the luminance mid-point of 0.5 ( cM = 2A = 0.2, 0.5, 0.8 ). This had the 
effect of creating a large range of luminance differences across the LTB, for the same micropattern density.

Experiment 4: Segmenting LTBs while ignoring masking LSBs. Of particular interest for the current study is 
investigating the relationship between the mechanisms used to segment LTBs and those used to segment LSBs. 
If the mechanisms are fully distinct, an observer should have little difficulty in segmenting a superimposition 
of an LTB and an LSB (either of the same or different orientations), when instructed to segment using only the 
LTB cue. Conversely, identical or highly overlapping mechanisms would lead to profound impairment of per-
formance.

To investigate this question, we ran an experiment (Experiment 4a) using author CJD, two naïve experienced 
observers (EMR, KNB), and N = 6 naïve inexperienced observers. Observers were instructed to segment an LTB 
target using proportion of unbalanced patterns πU as the segmentation cue, where πU was presented at JND 
(75% correct) as measured for that observer (determined from Experiment 1a). For some trials, a masking LSB 
(also presented at that observer’s JND), which observers were instructed to ignore, was added to the LTB. There 
were three kinds of trials in this experiment: 200 neutral trials (neu) where the LTB was presented in isolation, 
200 congruent trials (con) with the LTB target and masking LSB having congruent boundary orientation (both 
cues left or right-oblique: see Fig. 2c), and 200 incongruent trials (inc) with the LTB target and masking LSB 
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having incongruent orientations (one cue left-oblique, the other right-oblique: see Fig. 2d). For the (200) congru-
ent stimuli, in half of trials (100) the two stimuli were consistent in which half had higher luminance (Fig. 2c, 
left), corresponding to luminance modulations that were phase-aligned (con-0). For the other half (100) of the 
trials, they were in conflict (Fig. 2c, right), corresponding to luminance modulations that were opposite-phase 
(con-180).

We also performed a second condition of this experiment (Experiment 4b) on three observers (CJD, KNB, 
MXD) in which the LSB maskers were presented at their JND thresholds determined from preliminary trials in 
which there was uninformative masking LTB present ( πU = 0 , meaning both sides of the boundary had equal 
numbers of black and white patterns). The JND thresholds in the presence of the uninformative masker were only 
slightly higher than the JND thresholds for the LSB stimulus in the absence of a masker (~ 1% vs. ~ 0.5%, for these 
three observers: Supplementary Table S5). Furthermore, even in the presence of the uninformative LTB masker, 
the lower-contrast (~ 0.5%) LSB used in Experiment 4a was segmented well above chance (~ 60–65% correct).

Psychometric data analysis. Signal-detection theory (SDT) psychometric function. Data was fit using a 
signal-detection theory (SDT) psychometric  function23, 24, in which the proportion correct responses ( PC ) for a 
single-interval classification task at stimulus level x is given by

where � is the cumulative unit normal distribution and d′ is the separation of the (unit variance) signal and 
noise distributions. Since stimulus discriminability often varies nonlinearly with reference stimulus  intensity25, 
the SDT modeling framework posits that d′ is related to stimulus intensity via a nonlinear transducer function23. 
Following this previous study, we utilize the power-law transducer function given in Eq. (2) which has N = 2 free 
parameters of gain g and transducer exponent τ . The SDT psychometric function was fit to psychophysical data 
using MATLAB R2016a (http:// www. mathw orks. com) routines (PAL_SDT_PFML_Fit.m) from the Palamedes 
 Toolbox24, 26 (http:// www. palam edest oolbox. org/). Data was fit both with and without lapse  rates27, 28, and nearly 
identical threshold estimates were observed in both cases, although sometimes fitting without lapse rates under-
estimated the psychometric function slope. For the case of the SDT psychometric function fitted using lapse rates, 

λ denotes the lapse probability, which was constrained to lie in the range [0, 0.1]. In this case, the SDT psycho-
metric function has N = 3 free parameters.

Bootstrapping psychometric functions. For some analyses,  bootstrapping29 was employed to determine the 95% 
confidence intervals for both the psychometric function thresholds (Experiment 1), as well as the proportion of 
correct responses predicted as a function of the stimulus level defined as either πU or absolute luminance differ-
ence (Experiment 3). For bootstrapping analyses, N = 100 or N = 200 simulated datasets were created as follows: 
for each stimulus level with ni presentations and ci experimentally observed correct responses (proportion of 
correct responses pi = ci/ni), we sampled from a binomial distribution having ni trials with probability pi to create 
a simulated number of correct responses for that stimulus level. We fit our SDT psychometric function to each of 
these simulated datasets, to obtain distributions of the psychometric function parameters, as well as the stimulus 
levels corresponding to JND (75% correct) performance.

Image-computable models. Image-computable SDT model. Models were also fit using one or two de-
rived quantities measured from stimulus images. We refer to such models as image-computable (IC), and this 
model in particular as IC-SDT. Given stimulus level x used to generate the stimulus, we obtained two quantities 
directly measured from the image: L(x), which is the absolute value of the difference in luminance across the 
diagonal corresponding to the target orientation, and C(x), which is the global RMS stimulus contrast. We then 
modified the SDT model defined in (1–3) by defining 

 In some analyses (Experiment 3), we defined 

 to model effects of global stimulus contrast C(x) that might co-vary with luminance differences L(x) as stimulus 
level x is varied. The form in (5), having N = 4 free parameters (N = 5 with lapse), is only appropriate for experi-
ments in which the global stimulus contrast C(x) varies, since otherwise it is over-parametrized—in these cases 
we set g2 = 0, in which case (5) becomes (4), having N = 2 free parameters (N = 3 with lapse).
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Image-computable model with one filtering stage. By design of the stimuli used in Experiments 1–3, for each 
trial image there is no difference in luminance across the anti-diagonal (the axis orthogonal to the stimulus 
orientation). Therefore, there was no need to take this into account when applying the IC-SDT model (4, 5). 
However, in the masking experiment (Experiment 4), in the case where the masking LSB has an incongruent 
orientation, there will be a luminance difference across the anti-diagonal, which can potentially influence the 
decision. To analyze this data, we apply a more general, image-computable model, which we call IC-1, having 
N = 2 free parameters. In the IC-1 model, illustrated schematically in Fig. 4a, we assume that each stimulus x 
gives rise to a decision variable u(x) which serves as input to the unit normal cumulative density function (CDF) 
Φ, so that the probability of a “right-oblique” behavioral response ( b = R ) is given by

where LR(x) , LL(x) are the absolute values of the measured luminance differences across the right- and left-
diagonals, g1 is a gain parameter and p1 an exponential nonlinearity. The IC-SDT model (1–5) is actually a special 
case of the IC-1 model (6, 7) in the case of stimuli having zero luminance difference across the anti-diagonal. 
Therefore, we will refer to both IC-SDT and IC-1 as the “one stage” model (Fig. 4a), although IC-1 is a more 
general model since it can also account for luminance differences across the anti-diagonal. We also extended the 
IC-1 model (6, 7) to include divisive normalization by global stimulus contrast C(x) , as in the IC-SDT model (5).

Image-computable model with two filtering stages. Masking data from Experiment 4 were fit using a two-stage 
image-computable model (IC-2), illustrated in Fig. 8a, which first convolves the image with on-center and off-
center Difference-of-Gaussians (DOG) filters. The output of this first filtering stage is rectified and then passed 
to a second stage of filtering which computes a difference in first-stage activity across the left and right oblique 
diagonals. Second-stage filters were assumed to take a half-disc shape, integrating uniformly across the first stage 
outputs. The outputs of these second-stage filters are then used (as described below) to calculate a decision vari-
able u(x) . We fixed the first-stage DOG filter properties so that the standard deviation of the Gaussian defining 
the filter center is matched to the radius of the dots, while that defining the surround has a standard deviation 
twice that of the center. This choice is consistent with previous classification image studies of Gaussian detection 
in  noise30. Mathematically, this filter is defined as

where c
(

x, y
)

 denotes the center, and s
(

x, y
)

 the surround, evaluated at 
(

x, y
)

 . The only free parameter for the 
first stage which we estimate from the data is the ratio ρIE of the amplitudes of the center and surrounds, with 
ρIE = 0 indicting no surround. If the rectified luminance differences (with nonlinear exponent p1 ) from the left 
and right ON-center filters is given by LONL (x) , LONR (x) , and from the OFF-center filters LOFFL (x) , LOFFR (x) , our 
decision variable is

where g2 , p2 are gains and nonlinearities for the second-stage filters. The two-stage model (IC-2) only con-
tains N = 4 free parameters ( ρIE , p1 , p2 , g2 ) which we estimate by fitting to data. To make computations trac-
table, we pre-filtered the stimuli with the center-surround DOG filters with IE amplitude ratios given by 
ρIE = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and then optimized (MATLAB fmincon.m) the remaining parameters 
for each value of ρIE . A DC-balanced filter (zero response to constant illumination) is obtained for ρIE ≈ 0.3 
(2.996). For smaller values the filter has a net excitatory receptive field, and for larger values it is net inhibitory. 
Two observers (CJD, JCO) had optimal ρIE values at one end-point of our search range ( ρIE = 0.1), whereas all 
other observers had optimal ρIE values between 0.15 and 0.3. Therefore, for these two observers the search range 
was expanded to include ρIE = 0.0, 0.05 to find the optimal value. Initial starting points for the optimization 
were found using a 3-D grid search with p1 , p2 taking grid values [0.5, 1, 2] and g2 taking grid values from  10−3 
to  101 in 5 log steps.

Model comparison. To evaluate the relative goodness-of-fit of different models, we make use of the Bayes 
Information Criterion (BIC), which is an asymptotic approximation to the log-posterior  density31, 32, given by 
the formula

where L(D|M) is the data (D) likelihood given the fitted model (M), K is the number of free model parameters, 
and n is the number of data points. Since exponentiating (10) yields the posterior probability (up to a constant), 
larger values of the BIC indicate a better fit. Sometimes the BIC is defined by multiplying (10) by a factor of 
− 2, so that a smaller value indicates a better  fit33. Using the definition in (10), the posterior probability ratio 
for two models can be obtained by simply exponentiating the difference of their respective BICs (e.g. Eq. (10) 
of  Reference33).
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Figure 3.  Psychometric functions and threshold distributions. (a) Psychometric functions and fitted functions 
based on SDT model (blue curves) for four observers (EMW, MCO, ERM, KNB) performing luminance texture 
boundary (LTB) segmentation (Experiment 1a) as a function of the proportion unbalanced micropatterns 
( πU ), i.e. the proportion of micropatterns not having a same-polarity counterpart on the opposite side of the 
boundary. The size of each solid dot is proportional to the number of trials obtained at that level, and dashed 
black lines denote 75% thresholds for the fitted curves. Circles and lines indicate threshold estimates and 95% 
confidence intervals obtained from 200 bootstrapped re-samplings of the data. (b) Histogram of segmentation 
thresholds ( πU ) measured from all observers (N = 17) in Experiment 1a.

Figure 4.  Single-stage filter model. (a) Image-computable model with a single stage of filtering (IC-1). 
Luminance differences are computed across the left-oblique and right-oblique diagonals, passed through a 
rectifying, exponentiating nonlinearity and subtracted to determine the probability P(R) of observer classifying 
the boundary as right-oblique. In the case where there is only a luminance difference across one diagonal, this 
model is equivalent to the IC-SDT model (Eq. (4)). (b) Fits of the model in (a) to LTB segmentation data from 
Experiment 1a for the same observers as in Fig. 3a.
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Results
Luminance texture boundary stimuli. In order to quantitatively examine the segmentation of lumi-
nance texture boundaries (LTBs), we defined a set of LTB stimuli which allowed us to vary the luminance across 
a boundary by varying the proportion of black and white micropatterns within in each region (Fig. 2a). When 
there are equal numbers of black (B) and white (W) micropatterns on each side of the boundary, each micropat-
tern is balanced by another of the same color on the other side. In this case, the luminance difference between 
regions is zero. When one side has more W patterns, and the opposite side has more B patterns, a proportion of 
the patterns on each side are imbalanced, giving rise to a difference in luminance across the diagonal. Therefore, 
we can modulate the luminance difference and therefore the boundary salience by changing the proportion of 
patterns on each side that are unbalanced ( πU ), as illustrated in Fig. 2a. A value of πU = 0 corresponds to no 
boundary, whereas πU = 1 means that all the patterns on each side are the same.

Experiment 1: Measuring segmentation thresholds. In Experiment 1a, we examined the ability of 
observers to segment LTBs using the proportion of unbalanced micropatterns ( πU ) as a cue. Figure 3a shows the 
SDT psychometric function (2, 3) fit to data from two representative inexperienced observers (EMW, MCO) and 
two experienced observers (ERM, KNB). Nearly identical threshold estimates were obtained with and without 
lapse rates (Supplementary Fig. S2a). A histogram of JND thresholds (75% correct) for all observers is shown in 
Fig. 3b. The median observer could perform the task with a threshold of πU = 0.31 , and the best observer could 
reliably segment at πU = 0.16 , suggesting a strong sensitivity to the proportion of unbalanced micropatterns on 
the two surfaces. In Experiment 1b we also determined LSB segmentation thresholds for luminance disc stimuli 
like that shown in Fig. 2b in units of Michelson contrast for the same observers tested in Experiment 1a (Sup-
plementary Fig. S3).

Evaluating a simple model. One simple explanation for LTB segmentation performance is that the visual 
system is performing a simple luminance difference computation, similar to that illustrated schematically in 
Fig. 4a. As the proportion of unbalanced micropatterns increases, so does this luminance difference, making the 
LTB more visible. We implemented an image-computable model derived from the SDT psychometric function 
(IC-SDT, Eq. (4)) in which performance was a function of the stimulus-level dependent luminance difference 
L(x) across the diagonal boundary. We see in Fig. 4b that this simple model predicts observer performance quite 
well as function of the luminance difference for LTB stimuli. Likewise, this model predicts performance well for 
LSB stimuli (Supplementary Fig. S4).

Experiment 2: Holding luminance difference constant. In order to directly test whether a simple 
luminance difference computation like that shown in Fig. 4a is adequate to explain LTB segmentation, in Experi-
ment 2 we constructed a series of LTB stimuli having an identical number of unbalanced micropatterns on 

Figure 5.  Holding luminance difference constant. (a) Examples of LTB stimuli used in Experiment 2, having 
an equal number (8) of unbalanced micropatterns on each side of the boundary, with varying numbers (0, 16, 
32) of balanced micro-patterns. In this series, the luminance difference across the boundary is constant for all 
stimuli. (b) Proportion correct responses for three observers for differing numbers of balanced micropatterns. 
Lines indicate 95% binomial proportion confidence intervals for each level (N = 50 trials at each level). We see 
that performance degrades significantly with increasing numbers of balanced micropatterns, despite constant 
luminance difference. This suggests that a simple luminance difference computation may be inadequate to 
explain segmentation of LTB stimuli.
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each side, which provide the segmentation cue, while increasing the number of balanced patterns on each side, 
which serve as distractors. Stimuli from this experiment are illustrated in Fig. 5a. We see in Fig. 5b that for all 
three observers tested, performance decreases as the number of distractors increases, with all observers show-
ing a significant effect of the number of distractors (Pearson’s chi-squared test; CJD: χ2(4) = 25.32, p < 0.001, 
ERM: χ2(4) = 34.817, p < 0.001, KNB: χ2(4) = 18.56, p = 0.001). These results argue against the hypothesis that 
LTB stimuli are segmented using a simple luminance difference computation, at least in cases like this where the 
total number of micropatterns co-varies with the proportion of unbalanced patterns.

Experiment 3: Varying contrast while segmenting by proportion unbalanced patterns. As 
suggested by Experiment 2, a simple luminance difference computation is not a plausible candidate for segment-
ing LTB stimuli. In Experiment 3, we adduce additional evidence against this simplistic model. In this experi-
ment, three observers (CJD, KNB, ERM) segmented LTB stimuli using the proportion of unbalanced micropat-
terns πU as a cue, as in Experiment 1a. This was performed for three different levels of the stimulus Michelson 
contrast ( cM = 0.2, 0.5, 0.8 ). This had the effect of creating drastically different regional luminance differences 
for stimuli in different series having the same proportion of unbalanced micropatterns πU . As we see in Fig. 6a, 
πU (left panels) is a much better predictor of observer performance than the absolute luminance difference (right 
panels). Therefore, despite wide variation in the absolute difference in luminance across the boundary at differ-
ent contrasts, observers are still able to segment boundaries differing in the proportion of light and dark areas 
in the two regions.

Extending the one-stage model: divisive computations. One can account for observer performance 
in Experiments 2 and 3 using a single-stage model like that in Fig. 4a by introducing a contrast normalization 
operation (5). Using data from all three contrast levels in Experiment 3, we fit both the standard IC-SDT model 
using simple luminance difference only (4), as well as the divisive IC-SDT model incorporating both luminance 
difference and RMS contrast normalization (5). As we see in Fig. 6b, the fit of the standard additive SDT model 
(red lines) is quite poor compared to the divisive IC-SDT model (blue lines). Since the divisive model has more 
parameters, we compare the goodness-of-fit using the Bayes Information Criterion (BIC), which rewards good-

Figure 6.  Using micro-pattern amplitude to vary global luminance difference. (a) Bootstrapped SDT 
psychometric function fits (200 bootstrapped re-samplings) with 90% confidence intervals of observer 
performance as a function of proportion unbalanced micropatterns (left panels) and absolute luminance 
difference (right panels). This shows that identical luminance differences give rise to significantly different levels 
of observer performance for the three Michaelson contrasts (right panels), i.e. global luminance difference is a 
very poor predictor of performance. Instead, observer performance is much better predicted by the proportion 
of unbalanced micro-patterns, (almost) irrespective of micro-pattern amplitude (left panels). (b) Data from 
Experiment 3 (black dots) and fits of the additive (red) and divisive (blue) image-computable signal detection 
theory models (IC-SDT) to the data. Each observer was tested at three different maximum micro-pattern 
amplitudes, which correspond to different Michaelson contrasts (0.2, 0.4, 0.8) of the stimuli. We see that a model 
incorporating a global luminance difference computation followed by contrast normalization (blue) provides an 
excellent fit to this data.
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ness of fit while penalizing model  complexity31–33. The BIC analysis suggests a strong  preference34 for the divisive 
model for all observers (Supplementary Table S1). Similar results were obtained using models with lapse rates 
estimated as well (Supplementary Fig. S5a). In addition, we see that the divisive model is able to do a reasonably 
good job of predicting observer performance in Experiment 2 (Supplementary Fig. S5b, red symbols).

Experiment 4: Segmenting LTBs while ignoring LSBs. The results of Experiments 1–3 suggest that 
a model implementing a luminance difference computation (Fig. 4a) with contrast normalization can poten-
tially explain LTB segmentation performance. However, one weakness of a single-stage model computing simple 
luminance differences is that it may be susceptible to interference from masking LSBs having incongruent orien-
tations. Motivated by these considerations, in Experiment 4 we investigated the extent to which segmentation of 
LTB stimuli is influenced by the presence of masking LSB stimuli which observers are instructed to ignore. The 
logic of this paradigm is that if LTBs and LSBs are processed by entirely different mechanisms, then the presence 
of a task-irrelevant LSB should have no effect on segmentation using the LTB cue. If one cue cannot be ignored, it 
suggests that there may be some overlap or interaction between the mechanisms. This sort of paradigm was used 
in a previous  study35 to demonstrate that second-order color and texture cues were not processed independently.

In Experiment 4a, N = 9 observers segmented LTB stimuli as in Experiment 1a using proportion of unbalanced 
micropatterns as a cue, with πU set to the observer’s 75% performance threshold. For 200 neutral trials, the LTB 
was presented in isolation, for 200 congruent trials a masking LSB at segmentation threshold was presented with 
the same orientation (L/R oblique) as the target (Fig. 2c), and for 200 incongruent trials the LSB was presented 
at the orthogonal orientation (Fig. 2d). For half of the congruent trials, the LTB and LSB were phase-aligned 
(Fig. 2c, "con-0", left), and for the other half they were opposite-phase (Fig. 2c, "con-180", right).

As we can see from Fig. 7a, performance when segmenting LTB stimuli when using πU as the cue is quite 
robust to interference from masking LSB stimuli. Statistical tests (Pearson’s Chi-squared) comparing observer 
performance across all three conditions did not find any significant effect of condition (neutral (neu), congruent 
(con), incongruent (inc)) for any individual observer (Supplementary Table S2). Pooling across all observers, 
we did however obtain significantly different (χ2(2) = 15.319, p < 0.001) values of proportion correct for each 
condition (neu: 0.8217, con: 0.8622, inc: 0.8189), due to slightly enhanced performance for congruent masking 
LSBs, since there was no impairment for incongruent masking LSBs (χ2(1) = 0.047, p = 0.828).

The enhanced performance for congruent masking LSBs was phase-dependent, as seen in Fig. 7b. For the 
aligned-phase case (con-0), we observe significant improvements in performance over the neutral condition 
for 4/9 observers (Supplementary Table S3). We fail to find any significant difference in individual observer’s 
performance between the neutral and opposite-phase (con-180) cases. Pooling across observers, we find sig-
nificant differences (χ2(1) = 24.383, p < 0.001) between the proportions correct for the neutral case and the 
aligned-phase case (neu: 0.8217, con-0: 0.8944). However, we fail to find a significant difference (χ2(1) = 0.288, 
p = 0.592) between the proportion correct in the neutral case and the opposite-phase case (con-180: 0.8300). 
In at least some observers (3/9 total, 2/8 naive) we see improved performance for phase-aligned compared to 
opposite-phase boundaries in the congruent case (Fig. 7b, Supplementary Table S4), as well as a significant effect 
(χ2(1) = 15.732, p < 0.001) pooling across all observers (con-0: 0.8944, con-180: 0.8300).

As a control, we ran another condition (Experiment 4b) on three observers (CJD, KNB, MXD) in which 
the masking LSB was presented at its JND measured in the presence of a non-informative LTB ( πU = 0 ). This 
JND was found to be slightly higher than the JND obtained for these same observers in Experiment 1a (~ 1% 
vs. ~ 0.5% Michelson contrast, Supplementary Table S5). However, despite this stronger LSB masker, the results 
from Experiment 4b were qualitatively identical to those in Experiment 4a (Supplementary Fig. S8a,b). Two 
out of three (2/3) individual observers (KNB, MXD) did not demonstrate any significant effect of the congru-
ency condition (Supplementary Table S6), or any significant difference between the neutral case and the two 

Figure 7.  Effects of masking LSBs on LTB segmentation. (a) Performance for N = 9 observers in Experiment 
4a, segmenting LTB stimuli using a proportion of unbalanced micro-patterns ( πU ), set at 75% JND for each 
observer, as measured in Experiment 1a. We see similar performance for most observers in the absence of a 
masker (neutral case, neu) as well as with a masker having congruent (con) and incongruent (inc) orientation. 
Here the congruent case pools across in-phase and opposite-phase conditions. (b) Performance for same 
observers for congruent stimuli which are in-phase (con-0) and opposite-phase (con-180).
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congruent phase-alignment conditions (Supplementary Table S7). Only author CJD showed significant effects, 
exhibiting interference (relative to neu) in the inc and con-180 cases, and facilitation in the con-0 case. This was 
qualitatively consistent with CJD’s results in Experiment 4a (Supplementary Tables S2, S3). For the two congruent 
conditions, observers CJD and MXD both demonstrated significant differences between the con-0 and con-180 
phase conditions (Supplementary Table S8), also consistent with Experiment 4a.

Evaluating one-stage and two-stage models. Given our findings that LTB segmentation is fairly 
robust to interference from masking LSB stimuli, it seemed likely that LTBs might be detected by a distinct 
mechanism. Consequently, we considered the possibility that LTB segmentation may be better explained by a 
model like that shown in Fig. 8a with two stages of processing (IC-2), rather than a single stage as in the model in 
Fig. 4a. The first stage is comprised of small-scale spatial filters, implemented here as center-surround filters (see 
“Methods”, Eq. (8)) which are convolved with the input image and whose outputs are passed through a rectify-
ing nonlinearity. The second stage analyzes the first-stage outputs, with two large-scale filters selective for left-
oblique and right-oblique boundaries. These second-stage filter outputs are rectified, exponentiated, and sub-
tracted to determine the probability of an “R” response (“Methods”, Eq. (9)). Note that since the center-surround 
filters in the first stage are poorly driven by constant light levels, this model can in principle exhibit robustness 
to interference from LSBs, while still permitting some degree of influence, depending on the relative strengths of 
the center-surround units, which determines the response of the filter to mean luminance.

Figure 8.  Two-stage model fits Experiment 4 results. (a) Model with two cascaded stages of filtering (IC-2). The 
first stage of this model detects texture elements (here, micro-patterns) on a fine spatial scale. The second stage 
looks for differences in the outputs of these first-stage filters on the coarse spatial scale of the texture boundary, 
at either of two possible orientations. Such a model can detect differences in the proportions of black and white 
micro-patterns on opposite sides of the boundary, while being fairly robust to interference from luminance 
steps. (b) Fits of single-stage model IC-1 (green squares) and two-stage model IC-2 (red squares) to data from 
Experiment 4a (blue circles, lines denote 95% confidence intervals), for four ways of combining LTB and LSB 
stimuli: neutral (neu); congruent, in-phase (c0); congruent, opposite phase (c180); and incongruent (inc).
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Since in Experiment 4 there can be luminance differences across both the diagonal as well as the anti-diagonal, 
it was necessary to use a more general one-stage image-computable model than the IC-SDT model (4, 5) applied 
in Experiments 1–3. Therefore, we applied a more general model (IC-1, Eqs. (6), (7)) which compares luminance 
differences across the left and right diagonals to form a decision variable (See “Methods”).

Figure 8b shows the fits of both the one-stage model IC-1 (Fig. 4a) and two stage model IC-2 (Fig. 8a) to data 
obtained from Experiment 4a for four observers (EMW, MCO, ERM, KNB). One stage models were fit both with 
and without divisive normalization terms, and identical predictions of observer performance were obtained. 
We see in Fig. 8b that although both one-stage (green squares) and two-stage (red squares) models fit observer 
performance (blue circles) in the neutral (neu) and two congruent cases, the one-stage model clearly fails to 
account for observer performance in the incongruent case (inc), predicting near-chance performance. Plots like 
those in Fig. 8b are shown for all other observers in Supplementary Fig. S6. The lack of robustness of the one-
stage model to incongruently oriented LSBs argues strongly in favor of the two-stage model as a more plausible 
mechanism for LTB segmentation, at least in the presence of interfering LSBs. We observed a strong preference 
for the two-stage model for all observers in Experiment 4a, as measured by the BIC (Supplementary Table S9).

As shown in Fig. 8b, for the majority of observers, we obtain better LTB segmentation performance in the 
presence of a congruent boundary with aligned phase (con-0) than opposite phase (con-180). This difference is 
also evident for some of the other observers (Supplementary Fig. S6). Interestingly, the two-stage model allows 
for LSB stimuli to potentially influence LTB segmentation via a center-surround imbalance of the first-stage 
filters which can provide a mean-luminance ("DC") response. That is, if the on-center (off-center) filters have 
a small positive (negative) response to constant light levels, this would allow LSB stimuli to exert an excitatory 
influence on the second-stage filters, potentially explaining the slightly improved performance for the phase-
aligned vs. opposite-phase congruent case in Experiment 4 (Fig. 7b). We found that for 6/9 observers in Experi-
ment 4a, the first-stage linear filters had a positive DC response, whereas for 3/9 it was approximately to zero 
(Supplementary Table S9).

We investigate whether the two-stage model in Fig. 8a can also account for the results of Experiment 3 (Fig. 6). 
We find that as with the one-stage model, an excellent fit to the data (blue lines) is obtained using the two-stage 
model when a divisive normalization term is included (Supplementary Fig. S7).

Model fits to the data obtained in Experiment 4b yielded identical results to the fits obtained from Experi-
ment 4a (Supplementary Fig. S8c). For each individual observer we see a strong preference of the BIC measure 
for the two-stage model (Supplementary Table S10), consistent with Experiment 4a. We found a positive DC 
response for the first-stage filters for each observer, also consistent with our results in Experiment 4a (Supple-
mentary Table S10).

Discussion
Luminance textures. Over half a century of research in modern vision science has investigated visual 
texture segmentation using parametric  stimuli36–38. However, this psychophysical work has largely focused on 
manipulating changes in second-order or higher-order statistical properties which can define texture boundaries, 
while holding first-order (luminance) cues  constant14, 18. This is a sensible research strategy because it neatly iso-
lates the problem of understanding how higher-order statistics influence segmentation. However, it is ultimately 
incomplete since natural region boundaries typically contain first-order cues like color and  luminance1, 39–41, 
which can combine with higher-order cues for localization and segmentation 2, 40, 42–44. In most studies in which 
first-order cues are manipulated, they are presented as steps or  gratings7, 9—or when they are measured from nat-
ural images, it is as average luminance within a  region2, 40. However, as we see in Fig. 1, differences in mean lumi-
nance can also be caused by differences in the proportion of light and dark pixels in each surface region, with no 
abrupt change in albedo at the boundary. We refer to boundaries of this kind as luminance texture boundaries 
(LTBs), to distinguish them from luminance step boundaries (LSBs). Understanding whether or not these two 
kinds of luminance cue (LTB, LSB) are processed via the same, different, or partially overlapping mechanisms 
is of great utility for understanding how first-order and higher-order cues combine to enable natural boundary 
segmentation. The present study provides a first step in this direction, suggesting that multiple mechanisms may 
contribute to luminance-based boundary segmentation in natural vision.

Multiple mechanisms for segmentation using luminance cues. Clearly, whenever there are mean 
differences in luminance between two regions, a single stage of linear filtering (Fig. 4a) is capable of detecting 
this difference, for both LTBs (Fig. 4b) and LSBs alike. However, this simplistic model would make the pre-
diction that for any two boundaries with equal luminance differences, segmentation performance should be 
identical. Explicitly testing this idea in Experiment 2 and Experiment 3 lead us to reject this model. Further 
exploration revealed that we can however explain the LTB segmentation data in Experiments 2, 3 with a single 
stage of linear filtering if we incorporate a divisive  operation45 which normalizes filter outputs by global RMS 
contrast. Nevertheless, even with this improvement, any model positing a single filtering stage that computes 
a luminance difference is highly susceptible to interference from stimuli which provide extraneous luminance 
cues, for instance a cast shadow edge (LSB) with an orientation conflicting with the LTB orientation. We test this 
prediction explicitly in Experiment 4, where we investigated the ability of observers to segment LTB stimuli in 
the presence of masking LSB stimuli. In this experiment, we find that LTB segmentation is remarkably robust to 
interference from masking LSB stimuli. This robustness to masking argues against the idea that a single stage of 
filtering is adequate to fully explain LTB segmentation.

We posit that two sequential stages of filtering on different spatial scales may be required to explain LTB 
segmentation, and consider the two-stage model shown in Fig. 8a. It is comprised of an initial layer of filtering 
on a local spatial scale which detects the texture elements (micropatterns), followed by a second-stage of filtering 
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which looks for spatial differences in the rectified outputs of the first-stage filters on a global scale. This model 
successfully explains the ability of observers to segment LTB stimuli in the presence of masking LSBs (Fig. 8b), 
and also accounts for the LTB segmentation data obtained in Experiment 3 (Supplementary Fig. S7). Although 
the first stage filters in our model are implemented as center-surround filters, which are known to be present in 
area  V146, 47, orientation-tuned mechanisms pooled across different orientations can in principle serve the same 
 function16. This general model architecture is known as a Filter–Rectify–Filter  model48, and has been applied in 
dozens of studies to model texture segmentation and second-order  vision49. To our knowledge, the present study 
is the first time that it has been explicitly demonstrated that an FRF-style model can describe how observers 
segment textures defined entirely by first-order luminance cues.

One important finding from this study is that although LTB segmentation is highly robust to interference 
from masking LSB stimuli, it is not entirely independent. For instance, in Experiment 4 we found that segmen-
tation performance was slightly better for a congruently aligned superposition of LTB and LSB when they were 
phase-aligned compared to when in opposite phase (Fig. 7b). This interaction between LTB and LSB cues could 
arise in one of two possible ways. One possibility, suggested by our model fitting, is that the first-stage filters 
are not zero-balanced, so that they would exhibit a significant response to mean luminance. In particular, we 
observed that the on-center filters which best fit the data from Experiment 4 had a slightly positive response to a 
constant uniform stimulus (Supplementary Tables S9, S10). This residual luminance response of first-stage filters 
is consistent with previous psychophysical  studies30, as well as known neurophysiology of center-surround retinal 
ganglion  cells50. This idea also has some similarity to a recently proposed model for how visual cortex neuronal 
responses to contrast modulation and luminance stimuli might arise from Y-type retinal ganglion cells that 
are driven by non-zero-balanced bipolar  cells51. However, another possibility is that the final decision arises by 
integrating the outputs of a two-stage model like that in Fig. 8a containing zero-balanced filters, with the outputs 
of a single-stage model like that in Fig. 4a. Such a model would also be consistent with our observations, and it 
is of interest for future work to design an experiment which could distinguish between these two possibilities.

Future directions. Although natural surfaces may have luminance differences which arise due to lumi-
nance texture boundaries, many other textural differences do not involve changes in luminance. Micropattern 
orientation, density, contrast and other image features might all provide powerful segmentation  cues12–16, 18, 
which may be combined with luminance (and chromatic) cues to enable segmentation in natural vision. A 
number of previous studies have addressed the issue of first- and second-order cue combination in the special 
context of contrast  modulation52–55. More recent work has demonstrated that in-phase luminance and contrast 
modulations can accompany changes in surface illumination, and integrating these cues provides information 
important for shape-from-shading56, 57. In general it is of great interest for future research to understand how 
luminance textures combine with second-order cues for segmentation, since this situation probably occurs fre-
quently in natural images. Slight modifications to the stimuli utilized here would permit us to address these 
questions. For instance, we could define the black and white micropatterns as oriented bars or Gabors instead 
of dots, and simultaneously manipulate orientation and luminance cues to see how they summate, e.g. via prob-
ability summation or additive  summation23.

Another important issue not addressed in the current study is the relative importance of the black and white 
micropatterns for segmenting LTBs. A number of psychophysical studies have demonstrated that human observ-
ers detect light decrements better and faster than light  increments58–61. Perhaps consistent with this, neurophysi-
ological studies have revealed that "OFF cells" (responding more strongly to light decrements or to dark stimuli) 
are more prevalent than ON cells in  V162, 63, and that OFF cells support faster  processing60 and higher spatial 
 resolution64. It would be of great interest to apply psychophysical system  identification13 to fit more sophisticated 
versions of the model in Fig. 8a to a larger psychophysical dataset in order to determine if greater weight is applied 
to the OFF pathway in our task, and to what extent this might depend on  contrast65.

The present study suggests the possibility of neural mechanisms tuned to LTBs which are minimally influ-
enced by overlapping LSBs. We hypothesize that individual neurons tuned to LTBs will most likely be found in 
extra-striate areas, for instance V2, which contains neurons sensitive to second-order  boundaries66, 67 and V4, 
in which some neurons exhibit texture  selectivity68, 69. As suggested by our psychophysical models, neurons at 
higher areas of the visual pathway may receive inputs from neurons in V1 or V2 responsive to the micropatterns 
or texture elements. If the afferent presynaptic V1 neurons in one spatial region are optimally driven by light 
micropatterns, and those in an adjacent spatial region prefer dark micropatterns, the downstream extrastriate 
neuron might then be sensitive to differences in the proportion in light and dark micropatterns in these adjacent 
regions. It is of great interest for future neurophysiology studies to see if neurons can be observed which are selec-
tively responsive to LTB stimuli, while being poorly driven, if at all, by step edges. Such neurons could provide 
a physiological basis for the ability to segment surface boundaries in the presence of shadows and distinguish 
shadow edges from  boundaries41, 70.

Finally, a large body of work has demonstrated that deep neural networks trained on visual tasks like object 
recognition develop intermediate-layer representations which are sensitive to textural  features71–73. It would be 
of great interest for future investigation to study deep neural networks resembling the ventral visual  stream72 in 
order to look for neurons which are tuned to luminance texture boundaries while being relatively unresponsive 
to luminance steps, and to see if decoding such a population of units could account for human psychophysical 
performance in texture segmentation tasks.

Data availability
All data is available from author C.D. upon request.
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