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Occlusion boundaries and junctions provide important cues for inferring three-dimensional scene organization from two-
dimensional images. Although several investigators in machine vision have developed algorithms for detecting occlusions
and other edges in natural images, relatively few psychophysics or neurophysiology studies have investigated what features
are used by the visual system to detect natural occlusions. In this study, we addressed this question using a psychophysical
experiment where subjects discriminated image patches containing occlusions from patches containing surfaces. Image
patches were drawn from a novel occlusion database containing labeled occlusion boundaries and textured surfaces in a
variety of natural scenes. Consistent with related previous work, we found that relatively large image patches were needed
to attain reliable performance, suggesting that human subjects integrate complex information over a large spatial region to
detect natural occlusions. By defining machine observers using a set of previously studied features measured from natural
occlusions and surfaces, we demonstrate that simple features defined at the spatial scale of the image patch are insufficient
to account for human performance in the task. To define machine observers using a more biologically plausible multiscale
feature set, we trained standard linear and neural network classifiers on the rectified outputs of a Gabor filter bank applied to
the image patches. We found that simple linear classifiers could not match human performance, while a neural network
classifier combining filter information across location and spatial scale compared well. These results demonstrate the
importance of combining a variety of cues defined at multiple spatial scales for detecting natural occlusions.
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Introduction

One useful set of two-dimensional cues for inferring
three-dimensional scene organization are the boundar-
ies and junctions formed by the occlusions of distinct
surfaces (Guzman, 1969; Nakayama, He, & Shimojo,
1995; Todd, 2004), as illustrated in Figure 1. In natural
images, occlusion boundaries are defined by multiple
cues, including local texture, color, and luminance
differences, all of which are integrated perceptually
(McGraw, Whitaker, Badcock, & Skillen, 2003; Rivest
& Cavanagh, 1996). Although numerous machine
vision studies have developed algorithms for detecting
occlusions and junctions in natural images (Hoiem,
Efros, & Hebert, 2011; Konishi, Yuille, Coughlin, &
Zhu, 2003; Martin, Fowlkes, & Malik, 2004; Perona,

1992), relatively little work in visual psychophysics has
directly studied natural occlusion detection (McDer-
mott, 2004) or used natural occlusions in perceptual
tasks (Fowlkes, Martin, & Malik, 2007).

In this study, we investigate the question of what
locally available cues are used by human subjects to
detect occlusion boundaries in natural scenes. We
approach this problem by developing a novel database
of natural occlusion boundaries taken from a set of
uncompressed calibrated images used in previous
research (Arsenault, Yoonessi, & Baker, 2011; King-
dom, Field, & Olmos, 2007; Olmos & Kingdom, 2004).
We demonstrate that our database exhibits strong
intersubject agreement in the locations of the labeled
occlusions, particularly when compared with edges
derived from image segmentation databases. In addi-
tion, we find that a variety of simple visual features
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characterized in previous studies (Balboa & Grzywacz,
2000; Fine, MacLeod, & Boynton, 2003; Geisler, Perry,
Super, & Gallogly, 2001; Ing, Wilson, & Geisler, 2010;
Rajashekar, van der Linde, Bovik, & Cormack, 2007)
can be used to distinguish occlusion and surface
patches.

Using a simple two-alternative forced choice exper-
iment, we test the ability of human subjects to
discriminate local image regions containing either
occlusions or single surfaces. In agreement with related
work on junction detection (McDermott, 2004) and
image classification (Torralba, 2009), we find that
subjects require a fairly large image region (32 · 32
pixels) in order to make reliable judgments. Using a
quadratic classifier analysis, we find that simple visual
features defined on the scale of the whole image patch
(i.e., luminance gradients) are insufficient to account
for human performance, suggesting that human sub-
jects integrate complex spatial information existing at
multiple scales.

We investigated this possibility further by training
standard linear and neural network classifiers on the
rectified outputs of a set of Gabor filters applied to the
occlusion and surface patches. We found that a linear
classifier cannot fully account for subject performance
since this classifier simply detects low spatial frequency
luminance edges. However, a neural network having a
moderate number of hidden units compared much
better to human performance by combining informa-
tion from filters across multiple locations and spatial
scales. Our analysis demonstrates that only one layer of
processing beyond the initial filtering and rectification
is needed for reliably detecting natural occlusions.
Interpreting the hidden units as implementing ‘‘second-
order’’ filters, our results are consistent with previous
demonstrations that filter-rectify-filter (FRF) models
can detect edges defined by cues other than luminance
differences (Baker & Mareschal, 2001; Bergen &
Landy, 1991; Graham, 1991; Landy, 1991).

This study complements and extends previous work
by quantitatively demonstrating the importance of
integrating complex, multiscale spatial information

when detecting natural occlusion edges (McDermott,
2004). Furthermore, this work provides the larger
vision science community with a novel database of
occlusion edges as well as a benchmark dataset of
human performance on a standard edge-detection
problem studied in machine vision (Konishi et al.,
2003; Martin et al., 2004; Zhou & Mel, 2008). Finally,
we discuss possible mechanisms for natural occlusion
detection and suggest directions for future research.

Methods

Image databases

A set of 100 images containing few or no manmade
objects were selected from a set of over 850 calibrated
uncompressed color images from the McGill Calibrated
Color Image Database (Olmos & Kingdom, 2004).
Images were selected to have a clear figure-ground
organization and plenty of discernible occlusion
boundaries. Some representative images are shown in
Figure 2 (left column). A group of five paid under-
graduate research assistants were instructed to label all
of the clearly discernible continuous occlusion bound-
aries using Adobe Photoshop layers. They were given
the following instructions:

‘‘Your task is to label the occlusion contours in the
given set of 100 images. An occlusion contour is an
edge or boundary where one object occludes or blocks
the view of another object or region behind it. Label as
many contours as you can, but you do not need to label
contours that you are unsure of. Make each distinct
contour a unique color to help with future analysis.
Each contour must be continuous (i.e., one connected
piece). Start by labeling contours on the largest and
most prominent objects, and work your way down to
smaller and less prominent objects. Do not label
extremely small contours like blades of grass.’’

Students worked independently so their labeling
reflected their independent judgment. The lead author
(CD) hand-labeled all images as well, so there were six
subjects total.

In order to compare the statistics of occlusions with
image regions not containing occlusions, a database of
‘‘surface’’ image patches was selected from the same
images by the same subjects. ‘‘Surfaces’’ in this context
were broadly defined as uniform image regions which
do not contain any occlusions, and subjects were not
given any explicit guidelines beyond the constraint that
the regions they select should be relatively uniform and
could not contain any occlusions (which was prevented
by our custom-authored software). No constraints were
imposed with respect to lighting, curvature, material,

Figure 1. Occlusion of one surface by another in depth gives rise

to image patches containing occlusion edges (magenta circle)

and junctions (cyan and purple circles).
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shadows or luminance gradients. Therefore, some
surface patches contained substantial luminance gradi-
ents, for instance patches of zebra skin (Figure 3). Each
subject selected 10 surface regions (60 · 60) from each
of the 100 images, and for our analyses we extracted

image patches of various sizes (8 · 8, 16 · 16, 32 · 32)
at random locations from these larger 60 · 60 regions.
Example 32 · 32 surface patches are shown in Figure 2
(middle panel), and examples of both surface and
occlusion patches are shown in Figure 3.

Figure 2. Representative images from the occlusion boundary database, together with subject occlusion labelings. Left: Original color

images. Middle: Grayscale images with overlaid pixels labeled as occlusions (white lines) and examples of surface regions (magenta

squares). Right: Overlaid plots of subject occlusion labelings taken from an 87 · 115 pixel central region of images (indicated by cyan

squares in middle column). Darker pixels were labeled by more subjects, lighter pixels by fewer subjects.

Figure 3. Examples of 32 · 32 occlusions (left), surfaces (right), and shadow edges not defined by occlusions (bottom).
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Quantifying subject consistency

In order to quantify intersubject consistency in the
locations of the pixels labeled as occlusions we applied
precision-recall analysis commonly used in machine
vision (Abdou & Pratt, 1979; Martin et al., 2004). In
addition, we also developed a novel analysis method
which we call the most-conservative subject (MCS)
analysis which controls for the fact that disagreement
between subjects in the location of labeled occlusions
often arises simply because some subjects are more
exhaustive in their labeling than others.

Precision-recall analysis is often used in machine
vision studies of edge detection in order to quantify the
trade-off between correctly detecting all edges (recall)
and not incorrectly labeling non-edges as edges
(precision). Mathematically, precision (P) and recall
(R) are defined:

P ¼ tp

tpþ fp
; ð1Þ

R ¼ tp

tpþ fn
; ð2Þ

where tp, fp, tn, fn are the true and false positives and
true and false negatives, respectively. Typically, these
quantities are determined by comparing a machine
generated test edgemap E to a ground-truth reference
edgemap G derived from hand-annotated images
(Martin et al., 2004). Since all of our edgemaps were
human generated, we performed a ‘‘leave-one-out’’
analysis where we compared a test edgemap from each
subject to a reference ‘‘ground truth’’ edgemap defined
by combining edgemaps from all of the other remaining
subjects. Since our goal for this analysis was simply to
compare human performance on two different tasks
(occlusion labeling and region labeling), we did not
make use of sophisticated boundary-matching proce-
dures (Goldberg & Kennedy, 1995) used in previous
studies to optimize the comparisons between human
data and machine performance (Martin et al., 2004).
We quantify the overall agreement between the test and
reference edgemaps using the weighed harmonic mean
of P and R defined by:

F ¼ PR

aPþ ð1� aÞR : ð3Þ

This quantity F is known as an F-measure and was
originally developed to quantify the accuracy of
document retrieval methods (Rijsbergen, 1979), but is
also applied in machine vision (Abdou & Pratt, 1979;
Martin et al., 2004). The parameter a determines the
relative weight of precision and recall, and we used a¼
0.5 in our analysis.

In addition to the precision-recall analysis, we
developed a novel method for quantifying intersubject

consistency, which minimizes problems of intersubject
disagreement arising from the fact that certain subjects
are simply more exhaustive in labeling all possible
occlusions than other subjects. We defined the most
conservative subject (MCS) for a given image as the
subject who had labeled the fewest pixels. Using the
MCS labeling, we generate a binary image mask F,
which is 1 for any pixel within R pixels of an occlusion
labeled by the MCS, and 0 for all other pixels.
Applying this mask to the labeling of each subject
yields a ‘‘reduced’’ labeling, which is valid for inter-
subject comparison since it only includes the most
prominent occlusions labeled by all of the subjects. To
calculate the comparison between two subjects, we
randomly assigned one binary edgemap as the ‘‘refer-
ence’’ (Iref) and the other binary edge-map as the ‘‘test’’
(Itest). We used the reference map to define a weighting
function fc(r), which was applied to all of the pixels in
the test map that quantified how close each pixel in the
test map was to a pixel in the reference map.
Mathematically, our index is given by

f ¼ 1

Nt

X
ðx;yÞ�Itest

fc

�
r
�
ðx;yÞ;Iref

��
Itestðx;yÞ; ð4Þ

where r((x,y), Iref) is the distance between (x,y) and the
closest pixel in Iref, Nt is the number of pixels in the test
set and the function fc(r) is defined for 0 � c , ‘ by

fcðrÞ ¼
e�cr if 0 � r � R
0 if r.R

;

�
ð5Þ

and for c¼ ‘ by

f‘ðrÞ ¼
1 if r ¼ 0
0 if r. 0

;

�
ð6Þ

where R is the radius of the mask, which we set to R¼
10 in our analysis. The parameter c in our weighting
function sets the sensitivity of fc to the distance between
the reference labeling and the test labeling. Setting c¼ 0
counts the fraction of pixels in the test edgemap, which
lie inside the mask generated by the reference edgemap,
and setting c ¼ ‘ measures the fraction of pixels in
complete agreement between the two edgemaps.

Statistical measurements

Patch extraction and region labeling

Occlusion patches of varying sizes centered on an
occlusion boundary were extracted automatically from
the database by choosing random pixels labeled as
occlusions by a single subject, cycling through the six
subjects. Since we only wanted patches containing a
single occlusion separating two regions (figure and
ground) of roughly equal size, we only accepted a
candidate patch when:
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1. The composite occlusion edge map from all subjects
consisted of a single, connected piece in the analysis
window.

2. The occlusion contacted the sides of the window at
two distinct points and divided the patch into two
regions.

3. Each region comprised at least 35% of the pixels.

Each occlusion patch consisted of two regions of
roughly equal size separated by a single boundary, with
the central pixel (w/2, w/2) of a patch of size w always
being an occlusion (Figure 4a). Note that this
procedure actually yields a subset of all possible
occlusions, since it excludes T-junctions or occlusions
formed by highly convex boundaries. Since the
selection of occlusion patches was automated, there
were no constraints on the properties of the surfaces on
either side of the occlusion with respect to factors like
lighting, shadows, reflectance or material. In addition
to the occlusion patches, we extracted surface patches
at random locations from the set of 60 · 60 surface
regions chosen by the subjects. We used 8 · 8, 16 · 16,
and 32 · 32 patches for our analyses and psychophys-
ical experiments.

Grayscale scalar measurements

To obtain grayscale images, we converted the raw
images into gamma-corrected RGB images using
software available online at: http://tabby.vision.mcgill.
ca (Olmos & Kingdom, 2004). We then mapped the
RGB color space to the NTSC color space, obtaining
the grayscale luminance I ¼ 0.2989 � R þ 0.5870 � G þ
0.1140 � B (Acharya & Ray, 2005). From these patches,

we measured a variety of visual features, which can be
used to distinguish occlusion from surface patches.
Some of these features (for instance luminance differ-
ence) depended on there being a region labeling of the
image patch, which separates it into regions corre-
sponding to two different surfaces (Figure 4a). How-
ever, measuring these same features from surface
patches is impossible since surface patches only contain
a single surface. Therefore, in order to measure region
labeling-dependent features from the uniform surface
patches, we assigned to each surface patch a set of 25
‘‘dummy’’ region labelings from our database (span-
ning all possible orientations). The measured value of
the feature was then taken as the maximum value over
all 25 dummy labelings, which is sensible since all of the
visual features were on average larger for occlusions
than uniform surface patches.

Given a grayscale image patch and a region labeling
R ¼ {R1, R2, B} partitioning the patch into regions
corresponding to the two surfaces (R1,R2) as well as the
set of boundary (B) pixels (Figure 4a), we measured the
following visual features taken from the computational
vision literature:

G1. Luminance difference Dl:

Dl ¼ jl1 � l2j; ð7Þ
where l1, l2 are the mean luminance in regions R1, R2,
respectively.

G2. Contrast difference Dr:

Dr ¼ jr1 � r2j; ð8Þ
where r1, r2 are the contrasts (standard deviation) in
regions R1, R2, respectively. Features G1 and G2 were
both measured in previous studies on surface segmen-
tation (Fine et al., 2003; Ing et al., 2010).

G3. Boundary luminance gradient GB:

GB ¼
jj�Ijj
I

; ð9Þ

where �I(x, y) ¼ []I(x, y)/]x, ]I(x, y)/]y]T is the
gradient of the image patch evaluated at the central
pixel, and I is the average intensity of the image patch
(Balboa & Grzywacz, 2000).

G4. Oriented energy Eh:

Eh ¼
XNh

i¼1
ðweven

i � xÞ2 þ ðwodd
i � xÞ2; ð10Þ

where x is the image patch in vector form and
weven
i ,wodd

i are a quadrature-phase pair of Gabor filters
of Nh¼ 8 evenly spaced orientations hi. For patch size
w, the filters had means w/2 and standard derivations of
w/4. Oriented energy has been used in several previous
studies as a means of detecting edges (Geisler et al.,

Figure 4. Illustration of stimuli used in the psychophysical

experiments. (a) Original color and grayscale occlusion edge

(top, middle) and its region label (bottom). The region label divides

the patch into regions corresponding to the two surfaces (white,

gray) as well as the boundary (black). (b) Top: Grayscale image

patch with texture information removed. Middle: Occlusion patch

with boundary removed. Bottom: Boundary and luminance

information removed.
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2001; Lee & Choe, 2003; Sigman, Cecchi, Gilbert, &
Magnasco, 2001).

G5. Global patch contrast q:

q ¼ stdðIÞ: ð11Þ
This quantity has been measured in previous studies,
which quantify statistical differences between fixated
image regions and random image regions for subjects’
free-viewing natural images while their eyes are being
tracked (Rajashekar et al., 2007; Reinagel & Zador,
1999). Several studies of this kind have suggested that
subjects may be preferentially looking at edges (Bad-
deley & Tatler, 2006).

Note that features G3-G5 are measured globally
from the entire patch, whereas features G1, G2 are
differences between statistics measured from different
regions of the patch.

Color scalar measurements

Images were converted from RGB to LMS color
space using a MATLAB program, which accompanies
the images in the McGill database (Olmos & Kingdom,
2004). We converted the logarithmically transformed
LMS images into an Lab color space by performing
principal components analysis (PCA) on the set of
LMS pixel intensities (Fine et al., 2003; Ing et al., 2010).
Projections onto the axes of the Lab basis represent a
color pixel in terms of its overall luminance (L), blue-
yellow opponency (a), and red-green opponency (b).

We measured two additional properties from the
LMS color image patches represented in the Lab basis:

C1. Blue-Yellow difference Da:

Da ¼ ja1 � a2j; ð12Þ
where a1, a2 are the mean values of the B-Y opponency
component a in regions R1, R2, respectively.

C2. Red-Green difference Db:

Db ¼ jb1 � b2j; ð13Þ
where b1, b2 are the mean values of the R-G opponency
component b in regions R1, R2, respectively.

These color scalar statistics were motivated by
previous work studying human perceptual discrimina-
tion of different surfaces (Fine et al., 2003; Ing et al.,
2010).

Machine classifiers

Quadratic classifier analysis

In order to study how well various feature subsets
measured from the image patches could predict human
performance, we made use of a quadratic classifier
analysis. The quadratic classifier is a natural choice for

quantifying the discriminability of two categories
defined by features having multivariate Gaussian
distributions (Duda, Hart, & Stork, 2000), and has
been used in previous work studying the perceptual
discriminability of surfaces (Ing et al., 2010). Assume
that we have two categories C1,C2 of stimuli from
which we can measure n features u ¼ (u1,u2, . . . , un)

T,
and features measured from each category are Gauss-
ian distributed

pðujCiÞ ¼ Nðujli;RiÞ; ð14Þ
where li and Ri are the means and covariances of each
category. Given a novel observation with feature vector
u*, assuming that the two categories are equally likely a
priori we evaluate the log-likelihood ratio

L12ðu*Þ ¼ ln pðu*jC1Þ � ln pðu*jC2Þ; ð15Þ
choosing C1 when L12 � 0 and C2 when L12 , 0. In the
case of Gaussian distributions for each category as in
Equation 14, Equation 15 can be rewritten as

L12ðu*Þ ¼
1

2
jR2j � jR1j
� �

þ 1

2
Q1ðu*Þ �Q2ðu*Þ
� �

;

ð16Þ
where

QiðuÞ ¼ ðu� liÞTR�1i ðu� liÞ: ð17Þ
The task for applying this formalism is to define a set of
n features to measure from the set of image patches,
and then use these measurements to define the means
and covariances of each category in a supervised
manner. New image patches that are unlabeled can
then be classified using this quadratic classifier.

In our analyses, category C1 was occlusion patches
and category C2 was surface patches. We estimated the
parameters of the classifiers for each category by taking
the means and covariances of the statistics measured
from a set of 2,000 image patches (training set) and we
applied these classifiers to a different 400 patch subsets
of 1,000 image patches, which were presented to the
subjects (test set). This analysis was performed for
multiple classifiers defined by different subsets of
parameters, and for image patches of all sizes (8 · 8,
16 · 16, 32 · 32).

SVM classifier analysis

As an additional control, in addition to the quadratic
classifier analysis we trained a Support Vector Machine
(SVM) classifier (Cristianini & Shawe-Taylor, 2000) to
discriminate occlusions and surfaces using our gray-
scale visual feature set (G1–G5). The SVM classifier is a
standard and well-studied method in machine learning,
which achieves good classification results by learning
the separating hyperplane that maximizes the margin

Journal of Vision (2012) 12(13):15, 1–21 DiMattina, Fox, & Lewicki 6



between two categories (Bishop, 2006). We implement-
ed this analysis using the function svmclassify.m and
svmtrain.m in the MATLAB Bioinformatics Toolbox.

Multiscale classifier analyses on Gabor filter outputs

One weakness of defining machine classifiers using
our set of visual features is that these features are
defined on the scale of the entire image patch. This is
problematic because it is well known that occlusion
edges exist at multiple scales, and that appropriate scale
selection and integration across scale is an essential
computation for accurate edge detection (Elder &
Zucker, 1998; Marr & Hildreth, 1980). Furthermore,
it is well known that the neural code at the earliest
stages of cortical processing is reasonably well de-
scribed by a bank of multi-scale filters resembling
Gabor functions (Daugman, 1985; Pollen & Ronner,
1983), and that such a basis forms an efficient code for
natural scenes (Olshausen & Field, 1996).

In order to define a multiscale feature set resembling
the early visual code, we utilized the rectified outputs of
a bank of filters learned using Independent Component
Analysis (ICA). These filters closely resemble Gabor
filters, but have the additional useful property of
constituting a maximally independent set of feature
dimensions for encoding natural images (Bell &
Sejnowski, 1997). Example filters for 16 · 16 image
patches are shown in Figure 5a. The outputs of our
filter bank were used as inputs to two different standard
classifiers: (a) a linear logistic regression classifier and
(b) a three-layer neural network classifier (Bishop,
2006) having 4, 16, 64 hidden units. These classifiers
were trained using standard gradient descent methods,

and their performance was evaluated on a separate set
of validation data not used for training. A schematic
illustration of these classifiers is shown in Figure 5b.

Experimental paradigm

In the psychophysical experiments, image patches
were displayed on a 24-inch Macintosh cinema display
(Apple, Inc., Cupertino, CA). Since the RGB images
were linearized to correct for camera gamma (Olmos &
Kingdom, 2004), we set the display monitor to have
gamma of approximately 1 using the Mac Calibration
Assistant so that the displayed images would be as
natural looking as possible. Subjects were seated in a
dim room in front of the monitor and image patches
were presented to the center of the screen, scaled to
subtend 1.5 degrees of visual angle at the approximate-
ly 12-inch (30.5 cm) viewing distance. All stimuli
subtended the same visual angle to eliminate confounds
between the size of the image on the retina and its pixel
dimensions. Previous studies have demonstrated that
human performance on a similar task is dependent only
on the number of pixels (McDermott, 2004), so by
holding the retinal size constant the only variable is the
number of pixels.

Our experimental paradigm is illustrated in Figure 6.
Surrounding the image patch was a set of flanking
crosshairs whose imaginary intersection defines the
‘‘center’’ of the image patch. In the standard task, the
subject decides whether an occlusion boundary passes
through the image patch center with a binary (1/0) key-
press. Half of the patches were taken from the
occlusion boundary database (where all occlusions pass
through the patch center) and the other half of the
patches were taken from the surface database. There-
fore, guessing on the task would yield performance of
50 percent correct. The design of this experiment is
similar to a previous study on detecting T-junctions in
natural images (McDermott, 2004). To optimize
performance, subjects were given as much time as they
needed for each patch. Furthermore, since perceptual
learning can improve performance (Ing et al., 2010), we
provided positive and negative feedback.

We performed the experiment on two sets of naive
subjects having no previous exposure to the images or
knowledge of the scientific aims, as well as the lead
author (S0), for a total of six subjects (three males, three
females). One set of two naive subjects (S1, S2) was
allowed to browse grayscale versions of the full-scale
images (576 · 768 pixels) prior to the experiment. After
2–3 seconds of viewing, they were shown, superimposed
on the images, the union of all subject labelings. This
was meant to give the subjects an intuition for what is
meant by an occlusion boundary in the context of the
full-scale image, and was inspired by previous work on

Figure 5. Illustration of the multiscale classifier analysis using the

outputs of rectified Gabor filters. (a) Gabor functions learned

using ICA form an efficient code for natural images, which

maximize statistical independence of filter responses. (b) Gray-

scale image patches are decomposed by a bank of multiscale

Gabor filters resembling simple cells, and their rectified outputs

transformed by an intermediate layer of representation whose

outputs are passed to a linear classifier.
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surface segmentation where subjects were allowed to
preview large full-scale images of foliage from which
surface patches were drawn (Ing et al., 2010). A second
set of three naive subjects (S3, S4, S5) were not shown
the full-scale images beforehand, in order to control for
the possibility that this pre-exposure may have helped to
improve task performance.

We used both color and grayscale patches of sizes 8
· 8, 16 · 16, and 32 · 32. In addition to the raw image
patches, a set of ‘‘texture-removed’’ image patches was
created by averaging the pixels in each of the two
regions, thus creating synthetic edges where the only
cue was luminance or color contrast. For the grayscale
patches, we also considered the effects of removing
luminance difference cues. However, it is a much
harder problem to create luminance-removed patches
as was done in previous studies on surface segmenta-
tion (Ing et al., 2010), since simply subtracting the
mean luminance in each region of an image patch
containing an occlusion often yields a high spatial
frequency boundary artifact, which provides a strong
edge cue (Arsenault et al., 2011). Therefore, we
circumvented this problem by setting a 3-pixel thick
region around the boundary to the mean luminance of
the entire patch, in effect covering up the boundary.
Then we could remove luminance cues equalizing the
mean luminance on each side without creating a
boundary artifact since there was no boundary visible.
We called this condition ‘‘boundary þ luminance
removed.’’ One issue, however, with comparing these
boundaryþ luminance removed patches to the normal
patches is that now two cues are missing (the boundary
and the luminance difference), so in order to better
assess the combination of texture and luminance
information we also created a ‘‘boundary removed’’
condition, which blocks the boundary but does not
modify the mean luminance on each side. Illustrative
examples of these stimuli are shown in Figure 4b.

All subjects were shown different sets of 400 image
patches sampled randomly from a set of 1,000 patches
in every condition, with the exception of two subjects in
the luminance-only grayscale condition (S0, S2), who

were shown the same set of patches in this condition
only. Informed consent was obtained from all subjects,
and all experimental procedures were approved before-
hand by the Case Western Reserve University IRB
(Protocol #20101216).

Tests of significance

In order to determine whether or not the perfor-
mance of human subjects was significantly different in
different conditions of the task, we utilized the
standard binomial proportion test (Ott, 1993), which
relies on a Gaussian approximation to the binomial
distribution. This test is well justified in our case
because of the large number of stimuli (N ¼ 400)
presented in each experimental condition. For propor-
tion estimate p̂ we compute the 1 – a confidence interval
as

p̂ 6 z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
: ð18Þ

We use a significance level of a¼ 0.05 in all of our tests
and calculations of confidence intervals.

In order to evaluate the performance of the machine
classifiers we performed a Monte Carlo analysis where
the classifiers were evaluated on 200 different sets of
400 image patches randomly chosen from a validation
set of image patches. This validation set was distinct
from the set of patches used to train the classifier,
allowing us to study classifier generalization. We plot
95% confidence intervals around the mean perfor-
mance of our classifiers.

Results

Case occlusion boundary (COB) database

We developed a novel database of occlusion edges
and surface regions not containing any occlusions for

Figure 6. Schematic of the two-alternative forced choice experiment. A patch was presented to the subject, who decided whether an

occlusion passes through the imaginary intersection of the crosshairs. After the decision, the subject was given positive or negative

feedback.
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use in our perceptual experiments. Representative
images from our database are illustrated in Figure 2
(left column). Note the clear figural objects and many
occlusions in these images. In the middle column of
Figure 2, we see grayscale versions of these images,
with the set of all pixels labeled by any subject (logical
OR) overlaid in white. The magenta squares show
examples of surface regions labeled by the subjects.
Finally, the right column shows an overlay plot of the
occlusions marked by all subjects, with darker pixels
being labeled by more subjects and the lightest gray
pixels being labeled by only a single subject. Note the
high degree of consistency between the labelings of the
multiple subjects. Figure 3 shows some representative
examples of occlusion (left) and surface (right) patches
from our database. It is important to note that while
occlusions may be a major source of edges in natural
images, edges may arise from other cues like cast
shadows or changes in material properties (Kersten,
2000). The bottom panel of Figure 3 shows examples of
patches containing edges defined by shadows rather
than by occlusions.

In other annotated edge databases like the Berkeley
Segmentation Dataset (BSD) (Martin, Fowlkes, Tal, &
Malik, 2001), occlusion edges were labeled indirectly by
segmenting the image into regions and then denoting
the boundaries of these regions to be edges. We
observed that when occlusions are labeled directly
instead of being inferred indirectly from region
segmentations that a smaller number of pixels are
labeled, as shown in Figure 7b, which plots the
distribution of the percentage of edge pixels for all
images and subjects in our database (red) and the BSD
database (blue) for 98 BSD images segmented by six
subjects. We find that averaged across all images and
subjects that about 1% of the pixels were labeled as
edges in our database, whereas about twice as many
pixels were labeled as edges by computing edgemaps
using the BSD segmentations (COB median¼0.0084,N
¼ 600; BSD median ¼ 0.0193, N ¼ 588; p , 10�121,
Wilcox rank-sum).

We observed a higher level of intersubject consisten-
cy in the edgemaps obtained from the COB than those
obtained from the BSD segmentations, which we

Figure 7. Labeling occlusions directly marks fewer pixels than inferring occlusions from image segmentations and yields greater

agreement between subjects. (a) Top: An image from our database (left) together with the labeling (middle) by the most conservative

subject (MCS). The right panel shows a binary mask of all pixels near the MCS labeling (10 pixel radius). Bottom: Product of MCS mask

with labelings from three other subjects. (b) Histogram of the fraction of pixels labeled as edges in the COB (red) and BSD (blue)

databases across all images and all subjects. (c) Histogram of the subject consistency index for edgemaps obtained from the COB (red)

and BSD (blue) databases for c¼ 10. (d) Precision-recall analysis also demonstrates better consistency (F-measure) for COB (red) than

BSD (blue).
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quantified using a novel analysis we developed, as well
as a more standard precision-recall analysis (Abdou &
Pratt, 1979; Rijsbergen, 1979, Methods, Image data-
base). Figure 7a shows an image from the COB
database (top left) together with the edgemap and
derived mask for the most conservative subject (MCS),
which is the subject who labeled the fewest pixels (top
middle, right). When the MCS mask is multiplied by
the edgemap of the other subjects, we see reasonably
good agreement between all subjects (bottom row). In
order to quantify this over all images, we computed our
novel intersubject similarity index f defined in Equation
4 and in Figure 7c we see that on average that f is larger
for our dataset than for the BSD, where here we plot
the histogram for c ¼ 10 (COB median ¼ 0.2890, N ¼
3500; BSD median ¼ 0.1882, N ¼ 3430; p , 10�202,
Wilcox rank-sum). Similar results were obtained over a
wide range of values of c (Supplementary Figure S1). In
addition to our novel analysis, we also implemented a
precision-recall analysis (Abdou & Pratt, 1979; Rijs-
bergen, 1979) using a ‘‘leave-one-out’’ procedure where
we compared the edges labeled by one subject to a
‘‘ground truth’’ labeling defined by combining the
edgemaps of the five other subjects (Methods, Image
database). Agreement was quantified using the F-
measure (Rijsbergen, 1979), which provides a weighted
mean of precision (not labeling nonedges as edges) and
recall (detecting all edges in the image). We observe in
Figure 7d that for this analysis there is a significantly
better agreement between edgemaps in the COB
database than those obtained indirectly from the BSD
segmentations using this analysis (p , 10�28).

Visual features measured from occlusion and
surface patches

We were interested in determining which kinds of
locally available visual features could possibly be
utilized by human subjects to distinguish image patches
containing occlusions from those containing surfaces.
Toward this end, we measured a variety of visual
features taken from previous studies of natural image
statistics (Balboa & Grzywacz, 2000; Field, 1987; Ing et
al., 2010; Lee & Choe, 2003; Rajashekar et al., 2007;
Reinagel & Zador, 1999) from both occlusion and
surface patches. For patches containing only a single
occlusion, which can be divided into two regions of
roughly equal size, we obtained a region labeling,
illustrated in Figure 4a (bottom). The region labeling
consists of sets of pixels corresponding to the two
surfaces divided by the boundary (white and gray
regions), as well as the boundary (black line). Using
this region labeling, we can measure properties of the
image on either side of the boundary and compute
differences in these properties between regions. By

definition, surface patches are comprised of a single
region and therefore it is unclear how we can measure
quantities (like luminance differences), which depend
on a region labeling. Therefore, in order to measure the
same set of features from the surface patches, we
assigned to each patch a set of 25 dummy region
labelings (spanning all orientations) and for each
dummy labeling performed the measurements. Since
all features were, on average, larger for occlusions, for
surfaces we took as the measured value of the feature
the maximum over all 25 dummy labelings. A full
description of measured features is given in Methods
(Statistical measurements).

We compared the power spectra of 32 · 32 occlusion
and texture patches (Figure 8, left). On average there is
significantly less energy in low spatial frequencies for
textures than for occlusions, which is intuitive since
many occlusions contain a low spatial frequency
luminance edge (Figure 3, left panel). Analysis of the
exponent by fitting a line to the power spectra of
individual images found a different distribution of
exponents for the occlusions and the textures (Figure 8,
right). For textures the median exponent is close to 2,
consistent with previous observations (Field, 1987),
whereas for occlusions the median exponent value is
slightly higher (’2.6). This is consistent with previous
work analyzing the spectral content of different scene
categories, which show that landscape scenes with a
prominent horizon (like an ocean view) tend to have
lower spatial frequency content (Oliva & Torralba,
2001).

Figure 9 shows that all of the grayscale features (G1-
G5, Methods, Statistical measurements) measured from
surfaces (green) and occlusions (blue) are well approx-
imated by Gaussians when plotted in logarithmic
coordinates. Supplementary Table 1 lists the means
and standard deviations of each of these features. We
see that on average these features are larger for
occlusions than for textures, as one might expect
intuitively since these features explicitly or implicitly
measure differences or variability in an image patch,

Figure 8. Power spectra of 32 · 32 patches. Left: Median power

spectrum of occlusions (blue) and surfaces (green). Thin dashed

lines show the 25th and 75th percentiles. Right: Power-spectrum

slopes for occlusions (blue) and surfaces (green).

Journal of Vision (2012) 12(13):15, 1–21 DiMattina, Fox, & Lewicki 10

http://www.journalofvision.org/content/12/13/15/suppl/DC1
http://www.journalofvision.org/content/12/13/15/suppl/DC1


which will tend to be larger for occlusion patches.
Analyzing the correlation structure of the grayscale
features reveals that they are all significantly positively
correlated (Supplementary Table 2). Although some of
these correlations are unsurprising (like that between
luminance difference log Dl and boundary gradient log
GB), many pairs of these positively correlated features
can be manipulated independently of each other in
artificial images (for instance global contrast log q and
contrast difference log Dr). These results are consistent
with previous work, which demonstrates that in natural
images there are often strong conditional dependencies
between supposedly independent visual feature dimen-
sions (Fine et al., 2003; Karklin & Lewicki, 2003;
Schwartz & Simoncelli, 2001; Zetzsche & Rohrbein,
2001). Supplementary Figure S2 plots all possible
bivariate distributions of the logarithm of the grayscale
features for 32 · 32 textures and surfaces.

In addition to grayscale features, we measured color
features (C1–C2, Methods, Statistical measurements)
as well by transforming the images into the Lab color
space Fine et al. (2003); Ing et al. (2010). Using our

region labelings (Figure 4a, bottom), we measured the
color parameters log Da and log Db from our
occlusions. Supplementary Table 3 lists the means
and standard deviations of each of these features, and
we observe positive correlations (r¼0.43) between their
values, similar to previous observations of positive
correlations between these same features for two
nearby patches taken from the same surface (Fine et
al., 2003). This finding is interesting because occlusion
boundaries by definition separate two or more different
surfaces, and the color features we measure constitute a
set of independent feature dimensions. From the two-
dimensional scatterplots in Supplementary Figure S3,
we see that there is separation between the multivariate
distributions defined by these color parameters, sug-
gesting that color contrast provides a potential cue for
occlusion edge detection, much as it does for surface
segmentation (Fine et al., 2003; Ing et al., 2010).

Human performance on occlusion boundary
detection task

Effects of patch size, color and pre-exposure

In order to determine the local visual features used to
discriminate occlusions from surfaces, we designed a
simple two-alternative forced choice task, illustrated
schematically in Figure 6. An image patch subtending
roughly 1.5 degrees of visual angle (30.5 cm viewing
distance) was presented to the subject, who had to
decide with a binary (1/0) keypress whether an image
patch contains an occlusion. Patches were chosen from
a pre-extracted set of 1,000 occlusions and 1,000
surfaces, with equal probability of each type so
guessing would yield 50% correct. Subjects were
allowed to view each patch as long as they needed (1–
2 seconds typical) and following previous work,
auditory feedback was provided to optimize perfor-
mance (Ing et al., 2010). The task was performed on six
subjects having varying degrees of exposure to the
image database (Methods, Experimental paradigm).

Figure 10a illustrates the effect of patch size on the
task for grayscale image patches for all subjects. Thick
lines indicate the mean subject performance and thin
dashed lines denote 95% confidence intervals. We see
from this that performance is significantly different for
the different size image patches which we tested (8 · 8,
16 · 16, 32 · 32). For a subset of subjects (S0, S1, S2),
we also tested color image patches, and the results for
color image patches are shown in Figure 10b (red line)
together with the grayscale data from these same
subjects (black dashed line). We see from this plot that
for all patch sizes tested performance is significantly
better for color patches, which is sensible because color
is a potentially informative cue for distinguishing
different surfaces, as has been shown in previous work
(Fine et al., 2003; Ing et al., 2010).

Figure 9. Univariate distributions of grayscale visual features G1-

G5 (see Methods) for occlusions (blue) and textures (green).

When plotted on a log scale, these distributions are well described

by Gaussians and exhibit separation for occlusions and textures.
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One concern with the interpretation of our results is
that the brief pre-exposure (3 seconds) of subjects S1, S2
to the full-scale (576 · 768) images prior to the first task
session (Methods, Experimental paradigm) may have
unfairly improved their performance. In order to control
for this possibility, we ran three additional subjects (S3,
S4, S5) who did not have this pre-exposure to the full-
scale images, and we found no significant difference in
the performance of the two groups of subjects
(Supplementary Figure S4a). We also found that the
lead author (S0) was not significantly better at the task
than the two subjects (S1, S2) who were only briefly pre-
exposed to the images (Supplementary Figure S4b).

Therefore, we conclude that pre-exposure to the full-
scale images makes little if any difference in our task.

Effects of luminance, boundary and texture cues

In order to better understand what cues subjects are
making use of in the task, we tested subjects on
modified image patches with various cues removed
(Methods, Experimental paradigm). In order to deter-
mine the importance of texture, we removed all texture
cues from the patches by averaging all pixels in each
region (‘‘texture removed’’), as illustrated in Figure 4b
(top). We see from Figure 11a that subject performance
in the task is substantially impaired without texture
cues for the 16 · 16 and 32 · 32 patch sizes. Note how
performance is roughly flat with increasing patch size
when all cues but luminance are removed, suggesting
that luminance gradients are a fairly ‘‘local’’ cue, which
is very useful even at very small scales. Similar results
were obtained for color patches (Figure 12), where the
only cues available were luminance and color contrast.

Removing luminance cues while keeping texture cues
intact is slightly more tricky, since simply equalizing the
luminance in the two image regions can lead to
problems of boundary artifact (a high spatial frequency
edge along the boundary), as has been noted by others
(Arsenault et al., 2011). In order to circumvent this
problem, we removed the boundary artifact by covering
a 3-pixel wide region including the boundary by setting
all pixels in this strip to a single uniform value (Figure
4b, bottom). We then were able to equalize the
luminance on each side of the patch without creating
boundary artifact (luminance þ boundary removed).
Since the boundary pixels may could potentially
contain long-range spatial correlation information
(Hess & Field, 1999) useful for identifying occlusions,

Figure 10. Performance of human subjects at the occlusion

detection task for 8 · 8, 16 · 16, and 32 · 32 image patches. (a)

Subject performance for grayscale image patches. Thin dashed

lines denote 95% confidence intervals. Note how performance

significantly improves with increasing patch size. (b) Subject

performance for color image patches is significantly better than for

grayscale at all patch sizes.

Figure 11. Subject performance for grayscale image patches with various cues removed. Dashed lines indicate the average performance

for unaltered image patches, solid lines performance in the cue-removed case. (a) Removal of texture cues significantly impairs subject

performance for larger image patches. (b) Removal of the boundary and luminance cues substantially impairs subject performance at all

patch sizes. (c) Removal of the boundary cue alone without altering texture cues or luminance cues does not affect subject performance.

Journal of Vision (2012) 12(13):15, 1–21 DiMattina, Fox, & Lewicki 12

http://Supplementary Figure S4a
http://Supplementary Figure S4b


as an additional control we also considered perfor-
mance on patches where we only removed the
boundary (boundary removed).

We see from Figure 11c that simply removing the
boundary pixels has no effect on subject performance,
suggesting that subjects do not need to see the
boundary in order to perform the task, so long as
other cues like luminance and texture differences are
present. However, we see from Figure 11b that there
are profound effects of removing the luminance cues
while keeping the texture cues intact. We see that
subject performance is impaired at every patch size,
although in contrast to removing texture cues, we see a
substantial improvement in performance as patch size
is increased. This suggests that texture cues are
complementary to luminance cues in the sense that
texture information becomes more useful for larger
patches, while luminance is useful even for very small
patches.

Quadratic classifier analysis

Comparison with human performance

Our analysis of image patches taken from the
database suggests that relatively simple visual features
measured in previous related studies can potentially be
used to distinguish occlusions and surfaces (Figure 9).
Therefore, it was of interest to determine whether
machine classifiers defined using these simple visual
features could potentially account for human perfor-
mance on the task. Since the logarithmically trans-
formed features are approximately Gaussian distributed
(Figure 9 and Supplementary Figures S2, S3), following
previous work (Ing et al., 2010) we defined a quadratic
classifier on class-conditional distributions which we
modeled as multivariate Gaussians (Methods, Machine
classifiers). When data from both classes is exactly

Gaussian this classifier yields Bayes-optimal perfor-
mance (Duda et al., 2000). This classifier was then
tested on validation sets of 400 image patches drawn
from the same set shown to humans subjects (which
were not used to train the classifier), using 200 Monte
Carlo resamplings.

In Figure 13, we compare the performance of human
subjects (black lines) on the grayscale version of the
task with that of quadratic classifiers (blue lines).
Figure 13a shows task performance with the full
grayscale image patches. We see that the quadratic
classifier defined on all grayscale parameters (G1-G5,
Methods, Statistical measurements) does not capture
the experimentally observed improvement in subject
performance with increasing patch size. This suggests
that in addition to the scalar grayscale cues used to
define the classifier, subjects must be making use of
more complex spatial cues like differences in texture
(Bergen & Landy, 1991) or long-range spatial correla-
tions (Hess & Field, 1999), which are not available at
low resolutions but become available as the image
patch gets larger. We see from Figure 13b that a
quadratic classifier defined using only the luminance
difference is in much better agreement with human
performance when this is the only available cue for
performing the task. Similar results were obtained for
color image patches (Figure 14).

Ranking of feature dimensions

In order to understand which feature dimensions are
most important for the quadratic classifier detecting

Figure 12. Subject performance for unaltered color image patches

(dashed line) and with texture cues removed (solid line). Figure 13. Comparison of subject and quadratic classifier

performance for grayscale image patches. (a) Classifier defined

using all grayscale features (thick blue line) does not accurately

model human performance on the task with unmodified patches

(black line). (b) Classifier defined using only luminance cues

accurately models human performance in the texture-removed

condition where luminance differences are the only available cue.
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occlusions, we computed the d0 value for each of the
feature dimensions, with the results of this analysis
being summarized in Supplementary Table 4. We see
from this table that the best single grayscale parameters
for discriminating occlusion and surface patches are the
luminance difference (Dl) and overall patch variance
(q). We also see that contrast difference (Dr) by itself is
a fairly weak parameter for all patch sizes, while for the
larger patch sizes (16 · 16, 32 · 32) color cues are very
informative.

Our correlation analyses presented in Supplementary
Table 2 demonstrated that many of these features were

correlated with each other, so therefore it was of
interest to determine which features contributed the
most independent information to the classifier. We did
this by adding feature dimensions to the classifier one
by one in order of decreasing d0 for 16 · 16 and 32 · 32
patches, and applying each classifier to the task for 200
Monte Carlo simulations. The results of this analysis
performed on 16 · 16 and 32 · 32 image patches are
shown in Figure 15. We see from Figure 15 that for
grayscale classifiers containing q and Dl that no
performance increase is seen when one adds the
features GB (boundary gradient) and Eh (oriented
energy), most likely because these features are strongly
correlated with q, Dl (Supplementary Table 2).
However, we do see a jump in performance when the
contrast difference Dr is added, most likely because this
feature dimension is only weakly correlated with q and
Dl (Supplementary Table 2). For our analysis of the
color classifier, we see that there are substantial
improvements in performance when the color param-
eters Da and Db are added to the classifier, which makes
sense because color cues are largely independent from
luminance cues.

Comparison with SVM classifier

There are two logical possibilities for the poor match
between human performance in our task and the
performance of the quadratic classifier. The first
possibility is that the feature sets used to define the
classifier do not adequately describe the features
actually used by human subjects to perform the task.
A second possibility is that the feature set is adequate,
but the quadratic classifier is somehow suboptimal.
Although the quadratic classifier is Bayes optimal for
Gaussian distributed class-conditional densities (Duda

Figure 14. Comparison of subject and quadratic classifier

performance for color image patches. (a) Classifier defined using

all color features (thick blue line) does not accurately model

human performance (black line) on the task with unmodified

patches. (b) Classifier defined using only luminance and color

contrast more accurately models human performance in the

texture-removed condition.

Figure 15. Quadratic classifier performance on 32 · 32 patches as a function of number of features. Feature sets of varying lengths are

defined by ranking individual dimensions by their d0 measures and adding them in order from highest to lowest.
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et al., 2000), and our feature sets are reasonably well
described by Gaussians (see Figure 9 and
Supplementary Figures S2, S3), this description is far
from exact. Therefore, it is possible that some other,
more sophisticated classifier may yield superior perfor-
mance to the quadratic classifier, and hence provide a
better match with our perceptual data.

In order to control for this possibility, we compared
the performance of the quadratic classifier to a Support
Vector Machine (SVM) classifier (Bishop, 2006; Cris-
tianini & Shawe-Taylor, 2000) on the task of discrim-
inating grayscale occlusion patches from surfaces. We
found that the SVM classifier performed worse than the
quadratic classifier (Supplementary Figure S5). This
failure of the SVM classifier strengthens the argument
that the reason for the poor match of the quadratic
classifier with human performance is the inadequacy of
the measured feature set used to define the classifier,
rather than the inadequacy our classifier method.

Multiscale classifier analysis

Gabor feature set and classifiers

One weakness of the set of simple visual features
quantified in this study is that they are defined on the
scale of the entire image patch, and therefore do not
integrate information across scale. It is well known that
occlusions in natural images can exist on multiple
scales, and that accurate edge detection requires an
appropriate choice of scale (Elder & Zucker, 1998;
Marr & Hildreth, 1980). Furthermore, our feature set
does not include any features which quantify texture
differences, which is problematic because our psycho-
physical results suggests that texture is a very important
cue, and previous work in machine vision has
demonstrated that texture cues are highly informative
for detecting edges and segmenting image regions
(Bergen & Landy, 1991; Malik & Perona, 1990; Martin
et al., 2004; Voorhees & Poggio, 1988).

In order to choose a set of biologically motivated,
multiscale features to measure from the image patches,
we obtained a Gabor filter bank by applying the
Independent Components Analysis (Bell & Sejnowski,
1997) to natural image patches taken from our dataset
(Figure 5a), and this filter bank was applied to the
image patches. The independent component analysis
(ICA) algorithm learns a set of linear features that are
maximally independent, which is ideal for classifier
analyses since correlated features add less information
than independent features. The rectified outputs of this
Gabor filter bank were then used as inputs to two
supervised classifiers: (a) A linear binary logistic
classifier, and (b) a neural network classifier (Bishop,
2006) having 4, 16, and 64 hidden units. The logistic
classifier can be considered as a special case of the
neural network classifier illustrated in Figure 5b where

instead of learning the best hidden layer representation
for solving the classification task, the hidden layer
representation is always identical to the input repre-
sentation and only the output weights are modified.
After training, both classifiers were tested on a separate
validation set not used for training to evaluate their
performance.

Classifier comparison

Figure 16 shows the performance of these two
classifiers together with subject data for the grayscale
occlusion detection task. We see that the linear
classifier (blue line) does not accurately describe human
performance (black line), while the neural network (red
line) having 16 hidden units compares much more
favorably to the human subjects. Similar results were
obtained for a neural network with 64 hidden units, but
worse performance was seen with four hidden units
(not shown). We can see from Figure 16 that the linear
classifier does not increase its performance with
increasing patch size, and seems to perform similarly
to the quadratic classifier defined using only luminance
differences. This suggests that this classifier may simply
be learning to detecting low spatial frequency edges at
various orientations. Indeed, plotting the connection
strengths of the output unit with each of the Gabor
filters as in Figure 17 demonstrates that there are strong
positive weights for filters at low spatial frequency
located in the center of the image patch, thereby
detecting luminance differences on the scale of the
entire image patch.

In contrast, the neural network classifier learns to
spatially pool information across spatial scale and
location (Supplementary Figure S6), although the
hidden unit ‘‘receptive fields’’ do not seem to resemble

Figure 16. Performance of humans and classifiers defined on

multiscale Gabor feature set. We see that a simple linear classifier

(blue line) does not account for human performance (black

dashed line) in the task, a neural network classifier having an

additional hidden layer of processing (red line) compares well with

human performance.
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the hypothetical texture-edge detectors illustrated in
Figure 18, which could, in principle, encode edges
defined by second-order cues like differences in
orientation or spatial frequency. Interestingly, such
units tuned for texture-edges have been learned in
studies seeking to find a sparse code for patterns of
correlation of Gabor filter activities in natural images
(Cadieu & Olshausen, 2012; Karklin & Lewicki, 2003,
2009), and it is of interest for future work to examine
whether a population of such units can be decoded in
order to reliably detect occlusion edges. Nevertheless,
this analysis provides a simple existence proof that a
multiscale feature set coupled with a second layer of
representation, which pools across this set of multiscale
features may be adequate to explain natural occlusion
edge detection, and a similar computational scheme has
been proposed by various filter-rectify-filter models of
texture edge detection (Baker & Mareschal, 2001;
Landy & Graham, 2003). Interestingly, training neural
networks directly on pixel representations did not yield
models, which could match human performance
(Supplementary Figure S7, demonstrating the impor-
tance of the multiscale Gabor decomposition as a
preprocessing stage. Of course, we cannot suggest from
our simple analysis the detailed form, which this
integration takes or what the receptive fields of neurons
performing this operation may be like, but this is

certainly a question of great interest for future work in
neurophysiology and computational modeling.

Discussion

Summary of results

In this study, we performed psychophysical experi-
ments to better understand what locally available cues
the human visual system utilizes when detecting natural
occlusion edges. In agreement with previous work
(McDermott, 2004), we found that fairly large regions
(32 · 32 pixels) were required for subjects to attain
reliable performance on our occlusion detection task
(Figure 10). Studying the grayscale version of the task
in detail, we found that texture and luminance cues
were both utilized, although the relative importance of
these cues varied with the patch size. In particular, we
found that luminance cues were equally useful at all
patch sizes tested (Figure 11a). This suggests that
luminance differences are a local cue, being equally
useful for small as well as large patches. In contrast,
texture cues were only useful for larger image patches
(Figure 11b). This is sensible because texture is defined
by information occurring at a variety of scales (Portilla
& Simoncelli, 2000; Zhu, Wu, & Mumford, 1997), and
making patches larger makes more spatial scales
visible.

The importance of textural cues was further under-
scored by comparing human performance on the task
to the performance of a quadratic classifier defined
using a set of simple visual features taken from
previous work which did not include texture cues.
Although many of the visual features provided
independent sources of information (Figure 15) and
permitted some discrimination of the stimulus catego-
ries, this feature set could not account for human
performance in the task, overpredicting performance
for small (8 · 8) patches, and underpredicting

Figure 17. Schematic illustration of weights learned by the linear

classifier. We see that the linear classifier learns strong positive

weights (hot colors) with Gabor filters having low spatial

frequencies (long lines) located in the center of the image patch.

Figure 18. Hypothetical neural models for detecting occlusion edges defined by textural differences. (a) Hypothetical unit which detects

texture edges defined by differences in orientation energy. (b) Hypothetical unit that detects texture edges defined by spatial frequency

differences.
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performance for large (32 · 32) patches (Figure 13).
The overprediction of human performance for small
image patches is particularly interesting since it
demonstrates that subjects are not simply relying on
luminance cues, but are integrating texture cues as well,
which we found to be quite poor for small image
patches (Figure 11b).

One limitation of the visual feature set used to define
the quadratic classifier analysis is that the features are
defined on the scale of the entire image patch. This is
problematic since it is well-known that the earliest
stages of human visual processing perform a multiscale
analysis using receptive fields resembling Gabor filters
(Daugman, 1985; Jones & Palmer, 1987; Pollen &
Ronner, 1983), and that such a representation forms an
efficient code for natural images (Field, 1987; Olshau-
sen & Field, 1996). Furthermore, many computational
methods for texture segmentation and edge detection
use of a multiscale Gabor filter decomposition (Baker
& Mareschal, 2001; Landy & Graham, 2003). There-
fore, we defined a new set of classifiers taking as inputs
the rectified responses of a set of Gabor filters applied
to the image patches (Figure 5). We found that the
multiscale feature set was adequate to explain human
performance, but only provided that the classifier
making use of this feature set was sufficiently powerful.
In particular, a linear classifier was unable to account
for human performance since this classifier only learned
to detect luminance-edges at low spatial frequencies
(Figure 17). However, a neural network classifier
having an additional hidden layer of processing was
able to learn to reliably detect occlusions nearly as well
as human subjects (Figure 16). These results suggest a
multiscale feature decomposition together with rela-
tively simple computations performed in an additional
layer of processing may be adequate to explain human
performance in an important natural vision task.

Comparison with previous work

Relatively few studies in visual psychophysics have
directly considered the problem of what cues are useful
for detecting natural occlusion edges, with the closest
study to our own focusing on the more specialized
problem of detecting T-junctions in natural grayscale
images (McDermott, 2004). This study found that
rather large image regions were needed for subjects to
attain reliable performance for junction detection,
consistent with our results for occlusion detection. In
this work, it was found that many T-junctions easily
visible on the scale of the whole image were not
detectable using local cues, suggesting that they may
only be detectable by mechanisms making use of
feedback of global scene information (Lee & Mumford,
2003). Our task is somewhat complementary to that

studied by McDermott (2004) since we exclude T-
junctions and only consider nonjunction occlusions.
This gave us a much larger stimulus set and permitted
quantitative comparisons of human task performance
with a variety of models based on features measured
from occlusions and non-occlusions. However, we
arrive at the very similar conclusion for our task that
a substantial amount of spatial context is needed for
accurate occlusion detection (Figure 10), and that
many occlusions cannot be reliably detected using local
cues alone.

A related set of studies has considered the problem
of judging when two image patches belong to the same
or different surfaces, and comparing the performance
of human subjects with the predictions of Bayesian
models defined using sets of measured visual features
similar to those used to define our quadratic classifiers.
In contrast to one such surface segmentation study (Ing
et al., 2010), we found texture cues to be very important
for our task. One possible reason for the discrepancy
between our results and those of Ing et al. (2010) is that
their study only considered the problem of discrimi-
nating a very limited class of images, in particular the
surfaces of different leaves. Since the leaves typically
belonged to the same kind of plant, they were fairly
smooth and quite similar in terms of visual texture.
Therefore, for this particular choice of stimuli texture is
not a particularly informative cue, since leaves of the
same kind tend to have very similar textures. For our
task however, where very different surfaces were
juxtaposed to define occlusions, we found removal of
texture cues to be highly detrimental to subject
performance (Figure 11).

Previous work on edge localization reveals that
luminance, texture and color cues are all combined to
determine the location of edges (McGraw et al., 2003;
Rivest & Cavanagh, 1996), and similarly we find that in
our task these multiple sources of information are
combined as well. However, in our task we did not
consider quantitative models for how disparate cues
may be combined optimally, as has been done in a
variety of perceptual tasks (Knill & Saunders, 2003;
Landy & Kojima, 2001). One challenge with studying
cue combination in our task is that one of the major
cues used by the subjects are texture differences, and
unlike luminance or color, natural textures require very
high-dimensional models to fully specify (Heeger &
Bergen, 1995; Portilla & Simoncelli, 2000; Zhu et al.,
1997). The problem of optimal cue combination for
natural occlusion detection has been mostly considered
in the computer vision literature (Konishi et al., 2003;
Zhou & Mel, 2008), but models of cue combination for
occlusion detection have not been directly compared
with human data in a controlled psychophysical
experiment.
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Our computational analysis demonstrates the neces-
sity of multiscale image analysis for modeling human
performance in our occlusion detection task. Further-
more, our work and that of others demonstrates the
importance of textural cues for occlusion detection, as a
wide variety of computational models, which explain
human performance at detecting texture-defined edges
utilize a multiscale Gabor decomposition (Landy &
Graham, 2003). One broad class of computational
models of texture segmentation and texture edge
detection can be described ‘‘Filter-Rectify-Filter’’
(FRF) models, sometimes also referred to as ‘‘back-
pocket’’ models, where the rectified outputs of a Gabor
filter bank are then subject to a second stage of filtering,
and the outputs of these filters are then processed
further to obtain a decision about whether or not a
texture edge is present (Baker & Mareschal, 2001;
Bergen & Landy, 1991; Graham & Sutter, 1998; Landy,
1991; Landy & Graham, 2003). Our simple three-layer
neural network model (Figure 5) constitutes a very
simple model of the FRF type, with the hidden units
performing the role of the second-order filters. The
ability of our simple FRF model to solve this task as
well as human subjects provides additional evidence in
favor of the FRF computational framework.

Resources for future studies

Our database of hand-labeled occlusions (http://case.
edu) avoids many limitations of previously collected
datasets of hand-labeled edges. Perhaps the greatest
improvement is that unlike many related datasets
(Collins, Wright, & Greenway, 1999; Martin et al.,
2001), we make use of uncompressed calibrated color
images taken from a larger image set used in previous
psychophysical research (Arsenault et al., 2011; King-
dom et al., 2007; Olmos & Kingdom, 2004). JPEG
compression creates artificial statistical regularities,
which complicates feature measurements (Zhou &
Mel, 2008) and causes artifact when training statistical
image models (Caywood, Willmore, & Tollhurst, 2004).

Another improvement of this database over previous
work is that we explicitly label occlusion edges rather
than inferring them indirectly from labels of image
regions or segments. Although de facto finding region
boundaries does end up mainly labeling occlusions, the
notion of an image region is much vaguer than that of
an occlusion. However, due to the specificity of our
task, our database most likely neglects quite a few
edges which are not occlusions, since many edges are
defined by properties unrelated to ordinal depth like
shadows, specularities and material properties (Ker-
sten, 2000). Therefore, our database only represents a
subset (albeit an important one) of possible natural
edges.

Some databases only consider a restricted class of
images like close-up foliage (Ing et al., 2010) or lack
clear figural objects (Doi, Inui, Lee, Wachtler, &
Sejnowski, 2003). Our database contains a wide variety
of images at various spatial scales containing a large
number of occlusions. We do not claim that our images
are fully representative of natural images, but represent
a modest effort to obtain a diverse sample, which is
important since different categories of natural images
have different statistics (Torralba & Oliva, 2003), and
training statistical image models on different image
databases often yields different linear filter properties
(Ziegaus & Lang, 2003).
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