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Synonyms

Adaptive design optimization; Adaptive sam-
pling; Closed-loop experiments; Optimal experi-
mental design; Optimal stimulus design

Definition

Adaptive stimulus optimization refers to an exper-
imental approach in neuroscience where neuronal
or behavioral responses to stimuli presented on
previous trials are utilized to adaptively generate
new stimuli in an iterative, closed-loop manner,
usually by optimizing an objective function.
There are different choices for the objective func-
tion. For example, if the objective function is the
neural response itself, the optimization procedure
finds an optimal stimulus that drives maximum
response or is at least a local optimum in the
stimulus space. When the objective function is
the mutual information between the responses
and the unknown parameters of a stimulus-
response model, the optimization finds the

stimulus set that yields the most accurate param-
eter estimation.

Detailed Description

Overview
Traditional experiments in the neurosciences have
typically a fixed set of stimuli chosen a priori to
elicit responses from neurons in an open-loop par-
adigm, with data analysis and model fitting taking
place post hoc. In recent years, with increases in
computer power and improvements of algorithms,
there has been a growing interest in adaptively
generating stimuli online during the course of
experimentation in an iterative, closed-loop man-
ner, where neuronal responses from previous trials
are used to generate new stimuli (Benda et al. 2007;
DiMattina and Zhang 2013; Potter et al. 2013; Park
and Pillow 2016). This general paradigm is illus-
trated schematically in Fig. 1.

Adaptive stimulus optimization has long been
used in psychophysics for estimating sensory
thresholds (Watson and Pelli 1983; Kontsevich
and Tyler 1999) and enjoys a large body of theo-
retical results from the statistics and machine
learning literature (Paninski 2005; Chaloner and
Verdinelli 1995). In sensory neuroscience studies,
stimuli have been adaptively optimized for a wide
variety of experimental goals, including maximiz-
ing neural firing rates (O’Connor et al. 2005;
Chambers et al. 2014), finding maximally infor-
mative stimulus ensembles, (Machens et al.
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2005), and estimating and comparing models of
sensory processing (Lewi et al. 2009; DiMattina
and Zhang 2011; Tam 2012; Park and Pillow
2012, 2016). In addition to applications in
systems-level sensory neuroscience, closed-loop
approaches have also been applied in many
diverse areas including cognitive science, cellular
neurophysiology, and brain-computer interfaces
(Myung et al. 2013; Potter et al. 2013).

Optimizing Firing Rate
Methods for adaptive optimization of neuronal
firing rate fall broadly into two categories:
(1) hill-climbing methods and (2) genetic algo-
rithms. Hill-climbing methods utilize local pertur-
bations of a reference stimulus to estimate the
local response surface from noisy neural
responses, iteratively moving the reference stim-
ulus in a direction (e.g., the gradient) which
increases neural firing rate (Harth and Tzanakou
1974; O’Connor et al. 2005; Nelken et al. 1994;
Koelling and Nykamp 2012). Genetic algorithms
mimic biological evolution by broadly populating
the stimulus space with numerous stimuli and
using their elicited neural responses as a measure
of fitness. The fittest stimuli in each generation are
then used to define the next generation of stimuli
by recombination of their features in a manner

analogous to sexual reproduction (Yamane et al.
2008; Chambers et al. 2014). Genetic algorithms
have the advantage of being more robust to local
maxima than hill-climbing methods and more
extensively sampling the stimulus space.

Iso-response Surfaces
Instead of finding the single stimulus that optimizes
the firing rate, it is also useful to find the set of all
stimuli which elicit the same firing rate response.
The shape of these firing rate level sets can tell us
about how a sensory neuron combines stimulus
dimensions. This method has been applied in
diverse contexts, including studies of spectral inte-
gration in grasshopper auditory neurons and inte-
gration of photoreceptor inputs by V1 neurons
(Gollisch et al. 2002; Horwitz and Hass 2012).

Optimizing Information
Instead of characterizing a neuron by its preferred
or “optimal” stimulus, an alternative approach is
to characterize the neuron in terms of the stimulus
ensemble which its responses most reliably dis-
tinguish. This may be quantified by maximizing
the mutual information between the stimuli and
neural responses, and this technique was applied
byMachens et al. (2005) in a study of grasshopper
auditory receptor neurons.

Adaptive Stimulus
Optimization,
Fig. 1 Schematic
illustration of adaptive
stimulus optimization,
where responses to
preceding stimuli are used
to generate subsequent
stimuli in a closed-loop
manner (Reproduced from
DiMattina and Zhang 2013)
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Estimating and Comparing Models
Given an accurate model of the input-output rela-
tionship for a sensory neuron, it is possible in
principle to predict the neuron’s response to an
arbitrary stimulus. However, estimating high-
dimensional models from limited experimental
data often poses a serious technical challenge.
A study by Lewi et al. (2009) demonstrated that
adaptively selecting stimuli to optimize expected
mutual information between neural responses and
model parameters allowed fast and robust estima-
tion of generalized linear models. Subsequent
work by DiMattina and Zhang (2011) extended
this idea to arbitrary stimulus-response models
and also considered the problem of adaptively
optimizing stimuli for comparing multiple, com-
peting neural models. These methods were veri-
fied experimentally in a study of spectral
integration in the primate inferior colliculus
(Tam 2012). More recent work has considered
the use of well-chosen priors to further speed
convergence of receptive field estimates (Park
and Pillow 2012, 2016). Optimization of sensory
stimuli for model estimation and comparison have
also been recently applied in vision psychophys-
ics and cognitive science (Wang and Simoncelli
2008; Myung et al. 2013; Kim et al. 2014).

Cross-References

▶Bayesian Approaches in Computational
Neuroscience

▶Estimation of Neuronal Firing Rate
▶ Information Theory: Overview
▶ Spectrotemporal Receptive Fields
▶Neural Coding
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