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Identifying the optimal stimuli for a sensory neuron is often a difficult
process involving trial and error. By analyzing the relationship between
stimuli and responses in feedforward and stable recurrent neural net-
work models, we find that the stimulus yielding the maximum firing rate
response always lies on the topological boundary of the collection of
all allowable stimuli, provided that individual neurons have increasing
input-output relations or gain functions and that the synaptic connec-
tions are convergent between layers with nondegenerate weight matri-
ces. This result suggests that in neurophysiological experiments under
these conditions, only stimuli on the boundary need to be tested in order
to maximize the response, thereby potentially reducing the number of
trials needed for finding the most effective stimuli. Even when the gain
functions allow firing rate cutoff or saturation, a peak still cannot exist in
the stimulus-response relation in the sense that moving away from the
optimum stimulus always reduces the response. We further demonstrate
that the condition for nondegenerate synaptic connections also implies
that proper stimuli can independently perturb the activities of all neu-
rons in the same layer. One example of this type of manipulation is
changing the activity of a single neuron in a given processing layer while
keeping that of all others constant. Such stimulus perturbations might
help experimentally isolate the interactions of selected neurons within a
network.

1 Introduction

In sensory systems, the firing rate of a neuron often varies in a systematic
manner with the parameters of the presented stimulus (Adrian, 1928). Char-
acterizing the changes in mean neural firing rate with variations in stimulus
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Optimal Stimuli 669

parameters remains the most basic step to explore the function of sensory
systems, although temporal response properties and correlated responses
among neurons may carry additional information about the sensory stim-
uli (see references in Rieke, Warland, de Ruyter van Steveninck, & Bialek,
1997). It is sometimes of interest to identify the most effective or optimal
stimulus for a neuron, that is the stimulus among all possible sensory inputs
that elicits the maximum firing rate response. The intuitive idea about the
optimal stimulus requires this stimulus to be a strict maximum or a peak
in the sense that any excursion away from this stimulus in stimulus param-
eter space results in a decrease in firing rate. A strict maximum may not
always exist. For example, when the stimulus-response relation of an audi-
tory neuron is described by a function of quadratic form (Yu & Young, 2000),
a strict maximum is impossible if the quadratic form is a saddle (Zhang,
Anderson, & Young, 2004). From a theoretical point of view, whether a
peak exists in the stimulus-response relation of a sensory neuron should
be constrained ultimately by the architecture of the underlying neural
network.

As illustrated in Figure 1, the location of the optimal stimulus for a
neuron depends on the details of the synaptic connections. The input-output
relation of the neurons here is the logistic gain function g(x) =1/(1 +¢™)
(see Figure 1A). A single stimulus input x in the range [, b] projects to two
neurons, whose outputs are then weighted and summed to yield a single
output r. Depending on the connection weights, the maximum response
may occur either on the boundary (see Figure 1B) or in the interior (see
Figure 1C) of the input space [a, b]. Imagine that one is trying to find the
optimal stimulus for the output neuron. If one knows beforehand that the
optimal stimulus lies only on the boundary as in Figure 1B, then one need
only sample the two boundary points a and b of the stimulus interval. In
contrast, when the response peaks somewhere in the middle, one may have
to test many stimuli to locate the peak. In this letter, we generalize these
notions about the nature of the optimal stimulus to arbitrary feedforward
and recurrent networks.

A second and seemingly unrelated question is the extent to which one can
control the activity pattern of a group of neurons within a neural network
using sensory inputs only. It turns out that network controllability is related
to whether the optimal stimulus occurs only at the boundary of the stimulus
set, and the conditions depend on the anatomical patterns of convergence
and divergence between the layers of the network.

2 Allowable Stimuli Should Form a Compact Set

In biological sensory systems, the input is provided by the primary sensory
receptors, like retinal photoreceptors, cochlear hair cells, or mechanorecep-
tors in the skin. The activity of this initial sensory transduction layer forms
a vector in a finite dimensional space that represents the stimuli impinging
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Figure 1: The stimulus that elicits the strongest response may occur at either
the interior of the stimulus set or its boundary, depending on the network
architecture. The stimulus set (the collection of all allowable stimuli) here is the
interval [a, b]. (A) The standard logistic gain function is used for all neurons in
this figure. The cone indicates a recording electrode. (B) The response r of the
neuron at the top attains its maximum at the boundary b of the stimulus set
(horizontal bar). (C) The neuron at the top attains its maximum response at the
interior of the stimulus set.

on it. Since the stimuli used in sensory experiments are produced by devices
like computer monitors, tactile probes, and sound generators, which have
physical limits to the stimuli that can be produced, the space of all possible
stimuli that can be produced is bounded by these constraints.

For visual stimuli, for instance, a computer monitor may be able to vary
pixel intensity only between a minimum Iri, and a maximum I .. Suppose
there are N pixels in the display; then the luminance of each pixel is bounded
by

Imin = Ii = Imax, i= 1, 2» B N. (21)

Therefore, all images producible by the monitor lie within an N-dimensional
hypercube given by [Imin, Imax] X -+ X [Imin, Imax] With N factors for the
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intensities of all the pixels. The boundary of this hypercube consists of
stimuli with at least one pixel at either minimum or maximum luminance.

Another example is a sound-generating system constrained by the to-
tal output power. Suppose a sound stimulus is synthesized by summing
sinusoidal waves of distinct frequencies:

N
s(t) = Zui cos(w;t + ¢;), (2.2)

i=1

with frequencies w;, amplitudes a;, and phases ¢;. The maximum total
output power of the sound-generating system imposes an upper bound,

N

> a? <E, (2.3)

i=1

with E proportional to the maximum power. All sounds that can be gener-
ated here constitute a solid ball of radius +/E in the N-dimensional space of

the amplitudes (a1, ..., an). A stimulus with the maximum power lies on
the spherical surface, the boundary of the solid ball. In addition, the circular
phase variables ¢, .. ., ¢ form an N-dimensional torus. In the special case

of stationary sound stimuli characterized by the spectral amplitudes but
not the transients, the phase variables can be ignored (Yu & Young, 2000).

We assume that a sensory stimulus can be described by a finite set of
parameters or a point in a finite dimensional Euclidean space. This as-
sumption seems reasonable for all controlled experiments because in any
conceivable experiment in a lab, one can independently manipulate only
a finite number of stimulus parameters. For natural stimuli such as visual
scenes and sounds from the environment, one can still describe any given
set of stimuli to arbitrary precision by choosing a finite but large enough
set of parameters. We assume further that the collection of all permissible
or allowable stimuli in an experiment or in a natural environment should
form a compact set, which will be denoted by X. Compact means bounded
and closed in topology (Munkres, 1999). Bounded means that X can be put
inside a ball of finite radius. Closed means that X includes all its boundary
points. Boundary point is defined by the property that every ball, no matter
how small, centered at a boundary point of X should contain points both
inside X and outside X. By contrast, an interior point of X is the center of
any ball contained completely in X. The hypercube and the ball considered
above are both compact as long as the boundary surfaces are included.
We make the distinction between boundary point and interior point for
mathematical convenience. As the distance between an interior point and a
boundary point diminishes, their distinction eventually becomes meaning-
less for practical experiments.
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A compact stimulus set is always a union of two disjoint sets: an interior
that contains all the interior points and a boundary that contains all the
boundary points (Munkres, 1999). The interior is possibly an empty set.
The compactness condition is useful because a continuous function always
attains its maximum and minimum on a compact set, and the image is also
compact (Rudin, 1976). The input-output relation of a neuron is always
continuous for the network models considered in this letter. Hence, given
a compact set of allowable stimuli, a neuron always has a stimulus that
elicits the strongest response as long as the input-output relation of the
neuron is continuous. Moreover, the set of all responses of the neuron must
also be compact. The compactness property also holds for the response
patterns of a group of neurons. For brevity, the interior and the boundary
of the allowable stimulus set are called interior stimuli and boundary stim-
uli, respectively. Similarly, interior responses and boundary responses are the
interior and the boundary of the set of responses to all allowable stimuli,
respectively.

As a special case, it is possible to have a compact stimulus set with-
out an interior. Such a stimulus set consists entirely of boundary stim-
uli. For instance, let the sound signals in equation 2.2 have a constant
energy; then inequality 2.3 becomes the equality "I\, a? = E. This stim-
ulus set corresponds to an (N — 1)-dimensional sphere embedded in the
N-dimensional Euclidean space of the amplitudes (a1, . .., an). The sphere
has no interior and consists entirely of boundary points with respect to
the topology of the Euclidean space of (a1, ..., ay). In the theorems in this
letter, we assume that our stimulus sets are compact with both interior and
boundary.

The assumption of compactness requires that stimuli be suitably pa-
rameterized. For example, the luminance I; of pixel i in equation 2.1
may be expressed by a new parameter on a logarithmic scale, L; =
log((Imax — Imin)/(Ii — Imin)), which grows monotonically without bound as
I; approaches Inin. The hypercube considered above is no longer compact
in terms of L;.

How does one choose a suitable stimulus parameterization from many
mathematically equivalent expressions? Since our focus here is on the bi-
ological neural network in the sensory system, the most important con-
sideration is that the stimulus parameters should correspond to the in-
put to the first layer of the biological neural network. For instance, the
luminance of a pixel on a computer screen drives the activity of retinal
photoreceptors, or the amplitude of a frequency component in a sound
drives the activity of hair cells. The ionic current into a neuron is bounded
naturally, and this is the real justification on assuming a bounded stim-
ulus set. The main results in this letter do not rely on the exact details
of stimulus parameters. General topological assumptions on compactness
and the distinction between interior and boundary are sufficient for our
purposes.
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3 Network Architecture

3.1 Gain Functions Are Increasing and Differentiable. The input-
output relation of each individual neuron is specified by a gain function
that describes the dependence of the mean firing rate on the input. We as-
sume that gain functions are increasing and differentiable with continuous
derivatives. A gain function g(u) is called increasing if g(a) < g(b) for all
a < b and strictly increasing if g(a) < g(b) for all a < b. A sufficient condi-
tion for being increasing or strictly increasing is ¢'(u) > 0 or ¢'(u) > 0 for
all u, respectively. We further assume that zero derivative g'(u) = 0 may
occur for a continuous interval of input u but not at an isolated inflection
point. This assumption allows a gain function to hold constant over some
input interval, such as a zero firing rate for subthreshold inputs. These
assumptions are biologically reasonable, and they cover most of the gain
functions commonly used in neural modeling, some of which are illustrated
in Figure 2.

Continuous differentiability helps simplify the mathematical treatment
in the rest of the letter. Discontinuities in the derivative, like those caused
by thresholds, can be readily smoothed out by approximation methods like
the simple “surgery” shown in Figure 2C. The range of stimuli affected by
the surgery is [u1, up], which can be made arbitrarily small so that the ap-
proximation becomes practically indistinguishable from the original model.
Given any u; < up and g(u1) < g(u2), we replace the original gain function
g(u) in the interval u € [u1, u,] by constructing a continuously differentiable
and strictly increasing function:

ﬂwzgwn+/'wmn, 3.1)

whose derivative is f'(u) = ¢(u). Thus, f(u) is strictly increasing if we
choose ¢(u1) > 0 for all u € [uq, up]. To guarantee the continuity of the new
gain function and its derivative at the boundary points u#; and u,, we need
the following constraints: ¢(u1) = g'(11), ¢(u2) = §'(12), and

/mengw»—ym) (3.2)

It is easy to find a continuous and positive ¢(1) that satisfies all these
constraints. Higher-order derivatives can be made continuous as well, but
we need only the first derivative in this letter.

3.2 Feedforward Network. The general feedforward network consid-
ered in this letter is equivalent to a multilayer perceptron (Rumelhart,
Hinton, & McClelland, 1986) which includes the original perceptron as
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Figure 2: Examples of commonly used neuronal gain functions. (A) These gain
functions are increasing and continuously differentiable. (B) These gain func-
tions are increasing but not differentiable at the circled points. (C) Removal of
a singularity by replacing the original function (dashed line segments) within
the interval [u1, u,] by a smooth, strictly increasing function (thin solid curve),
with matching slopes at the end points u; and u,.
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a special case (Rosenblatt, 1962; Minsky & Papert, 1988). The activity r; ,, of
neuron i in layer m (2 < m < M) is given by

K1

Yim = i,m Z w;;n)rj,m—l = gzm(W,(m) . rm—l)v (33)
j=1

where g; ,, is the gain function of layer m neuron 7, which receives synaptic

connection with weight wf}n) from layer m — 1 neuron j with activity r; 1,
and K,,_1 is the number of neurons in layer m — 1 (see Figure 3A). The gain
functions of different neurons are allowed to be distinct. Weight wf'.m is pos-
itive if neuron j is excitatory and negative if it is inhibitory, as usual. The
last step in equation 3.3 replaces the summation in the first step by the inner
product between the weight vector w" = (w}”, w’, ..., w ) and the
activity vector ry,—1 = ("1, m—1, "2,m—1, - - - » "'Kp_1,m—1 ), with T indicating trans-
pose. For convenience, we rewrite equation 3.3 in an equivalent vector form:

gl,m(ng) “Tyio1)

(m)
W, [ V7
Ty = gu(Wr, 1) = gan( o 1 , (34)

Shmn (W - T1)

where g, = ($1,m, §2.m» - - - §K,.,m) gives the gain functions for all the
neurons in layer m and W is the K,, x K,,_1 weight matrix whose ith row
is wgm). The recursive relation 3.4 is valid starting from the second layer
(m > 2), while the first layer (m = 1) is the stimulus input vector given by

I =X= (xl,xz,...,xK])T. (35)

The feedforward network architecture illustrated in Figure 3A has
neurons ordered into hierarchical layers, and connections are allowed
between neurons only in consecutive layers. Any network without a closed
loop of connections is functionally equivalent to a feedforward network
of this form because any directed acyclic graph can be made into levels
or layers with the first layer comprising input vertices and the final layer
comprising only output vertices (Harary, Norman, & Cartwright, 1965). We
adopt the following rearrangement: the layer assigned to a given neuron is
the length of the longest path, where length is defined as the total number
of synapses passed from the input layer. Additional ghost units that do
not change their inputs (with identity gain function g(u) = u and output
weight = 1) can then be added to eliminate projections that skip layers.
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Figure 3: Neural network architectures considered in this letter. Dashed el-
lipses specify the weight vectors, and the cones indicate recording electrodes.
(A) A generic layered feedforward network here is a multilayer perceptron.
(B) Any network without loops (left) can be transformed into an equivalent
layered feedforward network (right). Dashed circles indicate “ghost units” or
input pass-through. This example comes from a proposed model of functional
circuitry in the dorsal cochlear nucleus in the cat auditory system (Young, 1998).
(C) The general form of a layered recurrent network allows arbitrary lateral con-
nections among neurons in the same layer, but only feedforward connections
between successive layers. (D) An arbitrary recurrent network (left) is equiva-
lent to alayered recurrent network with two layers (right). Dashed lines indicate
zero connections.

This trick can also ensure that output neurons are located only in the final
layer. Figure 3B shows an example of rearranging a network without loops
into an equivalent layered network.

3.3 Recurrent Network. The general structure of a layered recurrent
network considered in this letter is shown in Figure 3C. Compared with



Optimal Stimuli 677

the feedforward network in Figure 3A, the feedforward connections are
organized in the same way, but now arbitrary recurrent connections are
added to neurons within the same layer. Although no feedback across layers
isallowed in this layered network, any network with feedback can always be
rearranged into a layered network consisting of only two layers: a recurrent
layer (layer 2) with arbitrary lateral connections and an input layer (layer 1),
which can potentially connect with any neuron in layer 2. Figure 3D shows
an example of rearranging a network with feedback into an equivalent
layered network.

We use standard continuous firing rate dynamics (Wilson & Cowan,
1972; Amari, 1972; Hopfield, 1984). The firing rates of neurons in layer m
(2 < m < M) are described by a vector

gl,m(vl,m)

gz,m(UZ,m)
Iy = gm(vm) = . , (3.6)

8Ky, (VK,m)
where the net input v,, is interpreted as the membrane potentials or the
synaptic currents, and g, is the vector form of the gain functions. The

vector-matrix form of the dynamical equation reads

d vﬂl

dt

= -D"y,, + TMg, (v,,) + W, 1, (3.7)

where D™ is a diagonal matrix with positive entries, T™ is a K,, x K,
matrix for the strength of recurrent connections among neurons in layer
m, and Wy, is the input from layer m — 1 for 2 < m < M. Similar to
equation 3.5 for the feedforward network, here the firing rates for the first
layer are the stimulus input: 1r; = x.

4 Feedforward Network Results

4.1 Basic Results. To examine how the activity of any layer m (2 < m
< M) depends on the activity of the previous layer m — 1 in a feedforward
network, consider the differential formula derived from equation 3.4:

dry, =J™dr,,_1, (4.1)
where the Jacobian matrix is

] = GMWm (4.2)
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where
gim (ng) : rmfl) 0 .. 0
G — 0 gé,m (wgm) ’ rm—l) T 0
0 0 e g (W x, )

4.3)

is a diagonal matrix of the derivatives of the gain functions. Applying
equation 4.1. recursively all the way down the lower layers, we have

dt,, = JMjm=1 | J@gx, (4.4)

where in the last step, r; = x is used (see equation 3.5). As a simple ap-
plication of the chain rule for derivatives, this result is reminiscent of the
derivation of the backpropagation learning rule, although the latter involves
derivatives with respect to the weights rather than the stimulus (Rumelhart
et al., 1986). We can also write the derivatives equivalently as the Jacobian:

oty

Jomym=1 - y@, (4.5)
ox
Equations 4.4 and 4.5 show how the activity r,, of layer m is affected by
infinitesimal changes of the input x.
Recall that the rank of a matrix is the maximum number of linearly
independent rows or columns. An m x n matrix A is called full rank or
nondegenerate if

rank A = min{m, n}, (4.6)

which is the maximum rank possible. If the rank is less than the maximum
possible, we call the matrix degenerate. Let A be an m x n matrix and B be
an n x k matrix. If rank B = n, then

rank AB = rank A. (4.7)

Similarly, if rank A = n, then rank AB = rank B, which can be applied to
the Jacobian matrix in equation 4.2 to obtain

rank J™ = rank W, (4.8)
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assuming g/, # 0 so that the diagonal matrix G in equation 4.3 is non-
degenerate.
We present the first result as a theorem:

Theorem 1. Suppose a feedforward neural network satisfies the following condi-
tions:

1. Each layer contains no more neurons than the layer below it.
2. The weight matrices connecting successive layers have full rank.
3. All gain functions are continuously differentiable with positive derivatives.

Then given any compact stimulus set comprising an interior and a boundary, the
response of any neuron in the network can attain a maximum or minimum only at
the boundary of the stimulus set but never at its interior.

Before proving the theorem, we express the three conditions more ex-
plicitly. Condition 1 means that

Ki>Ky>---> Ky, (4.9)

where K, is the number of neurons in layer m, assuming there is a total of
M layers (see Figure 3A). Condition 2 means that

rank W = min{K,,, K,,_1} = Ky, (4.10)

which follows from equations 4.6 and 4.9. Here W isa K,, x K,,_1 matrix
that specifies the synaptic weights from neurons in layer m — 1 to neurons
in layer m. Finally, condition 3 means that g}, (1) > 0 for gain function g;
of neuron i in layer m.

Proof. Consider theresponser; ,, of asingleneuroni inlayerm. A necessary
condition for r; , to attain a maximum (or minimum) in the interior of the
stimulus set is that the gradient with respect to the stimulus x must vanish,
because otherwise one can always change the stimulus along the gradient to
further increase (or decrease) the response. Writing this necessary condition
using equations 4.2, 4.3 and 4.5 and taking the ith row of J"), we have

a .
T = gl (W )WY g — o, (411)

which is equivalent to

W (J L J@) = 0 (4.12)
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because g/, > 0. Since the product of the Jacobian matrices in the paren-
theses has full rank (see below), we must have the row vector wl(-m) =0as
required by linear independence. This is a contradiction because it implies
that neuron 7 in layer m receives no synaptic input at all, contradicting our
assumption that the weight matrix W has full rank. The contradiction es-
tablishes that a maximum (or minimum) cannot be attained at any interior
point. Since a continuous function always has a maximum and a minimum
on a compact set, those can be attained only at the boundary.

The only thing left to show is that the product of Jacobian matrices
in equation 4.12 indeed has full rank. Note that every J® has full rank
or rankJ™ = K,,, which follows from equations 4.8 and 4.10. Applying
equation 4.7 repeatedly, we obtain

rank (J®...J9J®) = rank J®...J®) = ... = rankJ"” = K,  (4.13)
for 2 < n < M. This verifies that the product in equation 4.12 has full rank.

This theorem holds true not only for every neuron in the top layer,
but also for every neuron in the other layers throughout the entire net-
work, including all the hidden units in the intermediate layers. Condition 1
for convergent connection hierarchy and condition 2 for nondegenerate
weight matrices are sufficient for theorem 1 to hold true, but none of them
is necessary. For example, if all connections in a network are excitatory (or
inhibitory), then any increase of the input will lead to an increase (or de-
crease) of response for all neurons throughout the network. The network
in Figure 1B is an example with all positive weights. In such networks,
both the maximum and the minimum responses can be attained only by
boundary stimuli regardless of whether conditions 1 and 2 are satisfied.
In other words, the conclusions of the theorem may hold true for some
networks that have divergent layers or degenerate weight matrices. But if
either condition 1 or condition 2 is removed, one can find counterexamples
that defeat the theorem. Therefore, in general, the two conditions cannot be
relaxed, although they are unnecessary for some networks.

Condition 1 requires that each layer contain no more neurons than a
lower layer. A network that does not satisfy this condition is shown in
Figure 1C. The theorem does not apply to this network. In general, condition
1 is not as restrictive as it first may appear because when one applies the
theorem to a neuron of interest, one needs to include only lower-layer
neurons that actually affect its activity. The resultant effective network can
satisfy condition 1 even when the whole network does not. We return to
this issue in section 6.2.

4.2 Stimulus Perturbation for Response Control. The network consid-
ered in the preceding section has another important property: the activities
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of all the neurons in any given layer of the network can be controlled si-
multaneously and independently by the stimulus. To see this, first consider
a local linear approximation of equation 4.4

Ary, = JAX, (4.14)

where Ar,, is the change of the response caused by a small but finite change
Ax of the stimulus, and

J=Jmyeb @ (4.15)

is the overall Jacobian matrix. Given any desired change Ar,, of the response
pattern, how can it be attained by a proper stimulus change Ax? One can
solve for Ax from equation 4.14 provided that J has full rank, and the
standard solution is

Ax ~ JIAL, + (I =]z, (4.16)

where ] is Moore-Penrose pseudoinverse, I is an identity matrix, and vector
z is arbitrary so that the solution in general is not unique (Ben-Israel &
Greville, 2003). Here the Jacobian J needs to have full rank because otherwise
any response vector Ar, lying outside the range space of J can never be
elicited by any stimuli.

To test whether the overall Jacobian J has full rank in an experiment, one
may use K; stimuli to elicit K; responses and then write the approximate
equation 4.14 in the matrix form R ~ JX. Here Xis a K; x K; square matrix,
with each column being a single stimulus vector Ax, and different stimulus
vectors are chosen to be linearly independent; R is a K, x K; response
matrix, with each column being a response vector Ar,,, which should be
averaged over repeated trials to reduce noise. Then

J~RX! (4.17)

is an estimate of the Jacobian from the experimental data. Here the rank
of the Jacobian J is always equal to the rank of the response matrix R, or
rank ] = rankR.

The argument above shows how to find a stimulus to generate any de-
sired change of response pattern by linear approximation. We prove below
that an exact inverse function actually exists so that the desired response
can be generated by a proper stimulus exactly, not just approximately.

Theorem 2. Suppose a feedforward neural network satisfies the same three condi-
tions in theorem 1 and the set of allowable stimuli is compact with an interior and
a boundary. Then the following statements hold:
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a. Given any interior stimulus and the corresponding pattern of responses in
any layer of the network, any arbitrary but sufficiently small changes to the
response pattern can be produced exactly by some stimulus.

b. All boundary response patterns can arise only from boundary stimuli. That
is, every response pattern in the topological boundary of the set of all possible
responses in any given layer of the network must come from some stimulus
on the boundary of the stimulus set.

Proof. Let the response vector r,, of neurons in any given layer m be
r,; = f(x), (4.18)

where x is the stimulus vector and function f is continuously differentiable
since it is built by linear combinations and compositions of continuously
differentiable gain functions. Consider the same Jacobian matrix,

I _y. (4.19)

x
as in equation 4.5, using the notation of equation 4.15. We have rank ] = K,
(full rank) according to the argument for equation 4.13. By assumption, the
stimulus vector x contains K; variables, whereas the response vector r,
contains K,, variables, which may be fewer because K; > K,, according to
equation 4.9. A unique inverse function of f does not exist when K; > K,,
because different stimuli may generate identical responses. However, it is
always possible to find a unique inverse function in a subspace of dimension
Ky, for the stimulus parameters according to the rank theorem, a variant of
the implicit function theorem (Spivak, 1965; Rudin, 1976). A more explicit
explanation is as follows. To specify a unique inverse function, first select
any subset of K,, stimulus variables from a total of K; to define a restricted
stimulus vector X such that the new Jacobian dr,, /9% is an invertible K, x
K,, matrix. Assuming from now on that all remaining K; — K,, stimulus
variables are always fixed, we can regard the response r,, as a function of
the selected stimulus variables X only, namely,

= £(X). (4.20)

The theorem follows from the fact that f is locally invertible, as detailed
below.

Proof of statement (a): Given any interior stimulus x° together with its
response 19, = f(x”), consider the restricted stimulus vector X’ and the func-
tion f as in equation 4.20. Since the Jacobian [dr,, /0X]z—x is invertible as
described above, we can apply the inverse function theorem (Rudin, 1976)
to find an open subset U in the restricted stimulus space and an open subset
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V = f(U) in the response space such that X € U and 1, € V, and the map-
ping between U and V is one-to-one and the inverse f~! is continuously
differentiable. In other words, pick any desired response pattern r, € V,
and the inverse function can always find a stimulus,

x=Ffr,) el, (4.21)

which should elicit the desired response exactly. This proves statement (a).

Proof of statement (b): The inverse function theorem implies that the re-
sponse 19, = f(x°) elicited by the interior stimulus x is contained by the
open set V, or 1Y, € V. Since every point in an open set is an interior point,
the response 1), is an interior point. This shows that an interior stimulus
can elicit only an interior response. In other words, a boundary response
cannot arise from an interior stimulus, and the only possibility left is its

arising from a boundary stimulus.

Statement (a) shows that one can find proper stimulus to perturb, simul-
taneously and arbitrarily, the activities of all neurons in any single layer of
the network. That is, pick any layer of the network; then all the neurons in
that layer are simultaneously and independently controllable. However, in
general, one may not be able to control neurons from two different layers
at the same time, although each layer is completely controllable by itself.
Another caveat is that the size of the desired change of responses, although
finite, should be sufficiently small. The proof involving the inverse function
theorem is an existence proof that does not specify the function explicitly.
To estimate how small is “sufficiently small,” one has to impose additional
constraints on the network, such as on the maximum slope of the gain
functions and the maximum synaptic weights.

As an example of simultaneous control, theorem 2 implies that it is
possible to alter the response of any given single neuron up or down while
keeping the responses of all other neurons in the same layer constant.
Perturbing the activity of a single neuron is just a special case of the arbitrary
changes to the activity pattern as described in statement (a) of theorem 2.
Finally, theorem 2 may be extended to allow the Jacobian in equation 4.19
to be degenerate rather than full rank, in which case the number of neurons
in a given layer that can be controlled simultaneously is equal to the rank
of the Jacobian (see section 6.1).

4.3 Topological Interior and Boundary of Stimuli and Responses.
Statement (b) of theorem 2 needs further explanation. As illustrated by
Figure 4, the maximum and minimum responses of a neuron are special
points belonging to the boundary of the set of all possible responses, and
therefore they must arise from boundary stimuli by statement (b). This ar-
gument may serve as another proof of theorem 1. Statement (b) of theorem 2
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Figure 4: Stimulus-response topology according to theorem 2. Although a net-
work with only two inputs and two outputs is illustrated here for clarity, the
general conclusions are valid for arbitrary dimensions. The arrow a — f(a)
shows that an interior stimulus (i.e., in the interior of the set of all stimuli) al-
ways elicits an interior response (i.e., in the interior of the set of all responses).
The arrow b — f(b) and the dashed arrow below show that a boundary re-
sponse (i.e., on the boundary of the set of all responses) can arise only from a
boundary stimulus (i.e., on the boundary of the set of all stimuli), never from
an interior stimulus. The maximum and minimum responses of each neuron
(open arrow heads) are special cases of boundary responses, and as such, they
must arise from some boundary stimuli.

is more general than theorem 1: while theorem 1 ensures only that the max-
imum and minimum responses of each individual neuron must originate
from the stimulus boundary, theorem 2 asserts that in fact, the entire bound-
ary of the pattern of responses in any given layer must arise also from the
stimulus boundary.

Under the conditions assumed in the theorems above, an interior stim-
ulus always elicits an interior response but never a boundary response. By
contrast, a boundary stimulus may elicit either a boundary response or an
interior response, depending on the details of the network. These general
results are summarized in Table 1.

To see all these possibilities intuitively, consider a translucent balloon
casting its shadow on the ground. A point inside the balloon is always cast
to the interior of the shadow, whereas a point on the surface of the balloon
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Table 1: Stimulus-Response Topology

Interior Response Boundary Response
Interior stimulus Always Never
Boundary stimulus Permissible Permissible

may end up either in the interior of the shadow or on its boundary. One can
readily construct a feedforward network that is analogous to this example
by taking the balloon as the stimulus set and the shadow as the response
set.

4.4 Gain Functions with Flat Segments. The results in the preceding
sections assume positive derivatives of the gain functions. Biological gain
functions may have flat segments such as when input is below threshold.
The vanishing derivative in the flat segment can induce degeneracy in the
Jacobian matrix, making the treatment in the preceding section inadequate.
The following theorem shows that with flat segments in gain functions,
the maximum (or minimum) response is attained still only by boundary
stimuli, but now some interior stimuli may elicit an identical response.
Nonetheless, a maximum (or minimum) response at the interior is not a
true peak (or valley) in the stimulus-response relation but a flat plateau
along some dimension.

Theorem 3. Suppose a feedforward neural network satisfies conditions 1 and 2
in theorem 1, but the gain functions have nonnegative derivatives, allowing zero
derivatives for continuous flat segments. Then for any stimulus set that is compact
with an interior and a boundary, the following statements hold:

a. The response of any neuron in the network to any interior stimuli can never
be greater (or less) than the maximum (or minimum) response to boundary
stimuli.

b. For any neuron in the network, if an interior stimulus elicits a response that
matches the maximum or minimum boundary responses, then it is possible
to perturb the stimulus continuously without altering the response. In other
words, a strict peak or valley in stimulus-response relation cannot exist.

Proof. We treat the gain functions with flat segments as the limit of a series

of strictly increasing functions so as to apply theorem 1. Define a series of
strictly increasing gain functions,

gi,m,N(u) = gi,m(”) + M/N, (422)

foreachneuroniinlayerm,withN = 1,2, ....Wehave g,f’ m. N(1) > Obecause
g,f,m(u) > 0 for the original gain function, and g; u, n(#) = gi.m(1) as N — oo.
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Now consider a series of networks (N =1, 2, . ..) with everything identical
to that of the original network except that the gain functions g; ,, are replaced
by gi.m n- Let f(x) be the response to stimulus x by any given neuron in the
original network, and let fy(x) be the response of the same neuron in the
network series. We claim that

lim fn(x) = f(x), (4.23)

N—oo

and the convergence is uniform for all stimuli x € X, with X being the
stimulus set. The uniform convergence property is needed to prove that the
maximum response of the original network is the limit of the maximum
responses of the network series since the maxima of the series may be
attained at different locations on the stimulus boundary.

To show the uniform convergence of equation 4 23 replace 1/Nin fy(x)
by a continuous variable ¢ € [0, 1] and write F(x, ¢) = fn(x) for ¢ > 0. The
case ¢ = 0 corresponds to the original network, and F (x,0) = f(x). Now we
have a continuous function F (x, ¢) defined on the product space X x [0, 1],
which is compact because X is compact. The function F (x, ¢) is continuous
because it is made of linear combinations and recursive compositions of
gains functions that are always continuous (see equations 3.3 and 4.22).
Since any continuous function on a compact set is uniformly continuous
(Heine-Cantor theorem), F (x, ¢) is uniformly continuous. This means that
for any given ¢ > 0, there exists a § such that

Vi =xl? + 16 — o2 < (4.24)
implies
[F(x1,61) — F(x2, )l < & (4.25)

for all x1,x; € X, and &1, & € [0, 1], with |||| indicating Euclidean distance.
In particular, setting x; = x, = x, {& = 0,and ¢&; = 1/N, we have F(x1, {1) =
fn(x) and F(xp, $2) = f(x). Then the statement that equation 4.24 implies
equation 4.25 becomes that N > 1/§ implies

[fnG) — f)] <e (4.26)

for all x € X. This verifies that the convergence in equation 4.23 is uniform.

Since a continuous function always has a maximum on a compact set
(Weierstrass theorem), we suppose that among all boundary stimuli 8 X, the
stimulus b € 9 X elicits the maximum response f (b) in the original network,
whereas the stimulus by € 9 X elicits the maximum response fn(by) in the
network series. Here X C X denotes the boundary of X. Next we show
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that equation 4.26 implies

| fn(bn) — f(b)] <. (4.27)

Split equation 4.26 into two inequalities:

NG < f(x) +e, (4.28)
fNG) > f(x) —e. (4.29)

Since f(b) is a maximum boundary response, we have f(x) < f(b) for any
x € 3 X. This inequality together with equation 4.28 implies

fn(by) < f(b) +¢ (4.30)

by putting x = by. Since the maximum response fn(by) > fn(x) for any x
by theorem 1, combining this inequality with equation 4.29 and then setting
x = b, we obtain

fn(bn) > f(b) —e. (4.31)

Combining equations 4.30 and 4.31 yields equation 4.27, and the arbitrari-
ness of ¢ proves that

I\%l_l}go fn(bn) = f(b). (4.32)

Now for any given interior stimulus a, applying theorem 1 to the network
series yields

fn(@) < fn(bn). (4.33)

Taking the limit N — oo on both sides of equation 4.33 and then using limits
4.23 and 4.32, we finally obtain

f(@) = f(b). (4.34)

This is equivalent to statement (a) for the maximum case. The proof for
the minimum case is analogous.

Proof of statement (b): The neuron of interest must receive input (possibly
indirectly) from at least one lower-level neuron whose input lies in the flat
segment of its gain function, because otherwise theorem 1 would apply
and contradict the assumption about the match. Let m be lowest layer with
a neuron in the flat segment. Then everything below layer m satisfies the
conditions for theorem 2, and we can find a proper stimulus to arbitrarily
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perturb the inputs to layer m using an inverse function. The only caveat
here is that the original statement of theorem 2 is about the response rather
than the input, but the conclusion can be readily extended to input by
taking the gain functions in layer m as the identity function g; (1) = u.
Now slightly increase or decrease the input to the selected neuron in layer
m while keeping it always within the flat segment, but without changing
the inputs to any other neuron in the same layer. The neuron of interest,
sitting at a layer higher than m, should maintain the same response because
the outputs from layer m never change while the stimulus is being altered.

5 Recurrent Network Results

We consider recurrent networks that exhibit global asymptotic stability,
which implies that given any stimulus, the network always settles into the
same response pattern or final equilibrium state, which is determined by
the stimulus only regardless of the initial state of the network (Bhatia &
Szego, 1970). This assumption seems reasonable for sensory neurons in
many neurophysiological studies, and it allows us to derive results parallel
with those for the feedforward networks, but it ignores intrinsically oscilla-
tory networks (Wilson & Cowan, 1972) such as those in the olfactory system
(Laurent et al., 2001).

First, we show that when confined to equilibrium states, a globally stable
recurrent network may resemble the feedforward network considered be-
fore. Whenever the network described by dynamical equation 3.7 reaches
an equilibrium state, we have dv,, /dt = 0, and the algebraic equation,

F(u,) = D"u,, — T"g, (u,) — W™s,,_; =0, (5.1)

for2 < m < M. Global stability implies that this equation has a unique solu-
tion of u,, for each given input s,,_;. For clarity, instead of v,,, we have used

different variables u,, = (U1, Uz s ..., U K"“m)T to denote the equilibrium
state, and
Sm—-1 = gmfl(umfl) (52)

is the counterpart of equation 3.6 for equilibrium state in layer m — 1 (2 <
m < M). The first layer is the stimulus input:

S1 = X. (5.3)

To ensure that equation 5.2 makes sense for the first layer, we define
u; = x and let the gain functions g1 = (1,1, §2.1. - - .. §k,.1) be the identity
functions, namely, g; 1(#) = u. According to the implicit function theorem
(Rudin, 1976; Krantz & Parks, 2002), equation 5.1 defines the equilibrium
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state u,, locally as an implicit function of the activity s,,_; from the lower
layer m — 1, provided that the matrix

M(m)(um) — agil:m) — D(m) _ T(”’)G(’”)(um) (54)
is invertible, where
G (uy,) = diag (81, (41.m): & W2m): - - > & (Ukym)) (5.5)

is a diagonal matrix of the gain function derivatives. The matrix M (u,,)
is guaranteed to be invertible if the linearized system is nondegenerate.
This is because the linearized version of equation 3.7 for layer m around the
equilibrium point u,, is actually

az,

dt = _M(m)(unt)zmv (5.6)

where z,, = v,, — u,,, and the input term from layer m — 1 disappears be-
cause it is assumed to be fixed. Global stability implies that here, the eigen-
value of —M)(u,,) cannot have positive real part, although it is still pos-
sible to have 0 as an eigenvalue and therefore a degenerate M (u,,) (see
appendix A).

By focusing on how the equilibrium state depends on the input, we can
treat the recurrent network in a manner similar to the feedforward network
as long as M (u,,) is invertible. Write the differential form of equation 5.1
as

du, = M™(u,,)"WMds,, ;. (5.7)

Combining this with ds,,_; = G"-D(u,,_1)du,_,, the differential form of
equation 5.2, we obtain the recursive relation

du, = ](m)dum—l (5.8)
where
JO =M (w,) WG () (5-9)

is analogous to the Jacobian in the treatment of the feedforward network.
Applying equation 5.8 repeatedly all the way down to layer 1 with equation
5.3, we have

du,, = JMyem=D  J@gx, (5.10)
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which is the counterpart of equation 4.4 for the feedforward network,
and

aum _ J(m)J(m—l) o J(Z) (511)
X

is the counterpart of equation 4.5.

In summary, equations 5.10 and 5.11 mean that the equilibrium state
u,, of the recurrent network plays the same formal role as the response 1,
in the feedforward network. As before, assuming strictly increasing gain
functions, now if the weight matrix W has full rank, then J™ also has
full rank and rank J™ = rank W, which is the same as equation 4.8. Equa-
tion 4.13 also still holds:

rank (J™...J9)®) = rank J™...J¥) = ... = rankJ" = K,,. (5.12)

Now we can state an analogous set of results for the recurrent network. The
proof is similar to that of the feedforward counterpart so that details will
be omitted.

Theorem 4. Suppose a hierarchical neural network has both feedforward con-
nections and recurrent connections within each layer, and satisfies the following
conditions:

1. Each layer contains no more neurons than the layer below it.

2. The weight matrices for feedforward connections between successive layers
have full rank.

3. All gain functions are continuously differentiable with positive derivatives.

4. For any given stimulus, the network state always approaches the same
response regardless of the initial state, and the linearized system is also
always stable.

Then for any stimulus set that is compact with an interior and a boundary, the
following statements hold:

a. The response of any neuron in the network can attain a maximum or mini-
mum only at the boundary of the stimulus set, never at its interior.

b. Given any interior stimulus and the corresponding pattern of responses in
any layer of the network, any arbitrary but sufficiently small changes to the
response pattern can be generated exactly by some stimuli.

c. All boundary responses in any given layer can arise only from boundary
stimuli.

Here “response” always refers to the equilibrium state of the network under a fixed
stimulus.
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The statements of this theorem are identical to those in theorems 1 and 2 for
feedforward networks. Conditions 1 to 3 are identical to those in theorem 1
except that the weight matrices in condition 2 are now explicitly identified
as the feedforward connections. The recurrent connections are constrained
implicitly by condition 4 on global stability. Since a globally stable nonlinear
system may sometimes allow a degenerate linearized system (see appendix
A), the stability of the linearized system is required explicitly here. The
stability of the linearized system, 5.6, implies that the eigenvalues of matrix
—~M)(u,,) can have only negative real parts, which in turn implies the
invertibility of this matrix.

The explicit requirement for a stable linearized system is no longer
needed if a sufficient condition for global stability can automatically guar-
antee the stability of the linearized system. The following example is a
generic two-layer recurrent network similar to that shown in Figure 2D.
Since only the second layer (m = 2) needs to be considered, we simply drop
the index m in equation 5.4 and write

M(u) = D — TG(u), (5.13)

where G(u) = diag(g; (1), g5(142), - - -, gk, (k,)) is the simplified version of
equation 5.5. One sufficient condition for global stability is that the sym-
metric matrix

11
S=DG ' - E(TJFTT) (5.14)

is positive definite, where G = diag(g}, g3, - . . , §k,) are the maximum slopes
of the gain functions with g/ > ¢j(u) for all u (Forti & Tesi, 1995; Lu & Chen,
2003). To see why this condition guarantees the invertibility of M(u), define

S(u) = DG(u)~' — %(T +T7), (5.15)
which can be rewritten as
S(u) = %(M(u)G(u)*l n (M(u)G(u)’l)T> (5.16)

using equation 51.3. The positive definiteness of S implies the positive
definiteness of S(u) because their difference S(u) — S is a positive diagonal
matrix by equations 5.14 and 5.15. It follows that M(u) must be invertible,
because otherwise S(u), as given by equation 5.16, would be degenerate
rather than positive definite. In conclusion, if one replaces condition 4 by
the assumption that S in equation 5.14 is positive definite, then both global
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stability and local stability follow automatically, and the conclusions of
theorem 4 stay the same.

Why are the results of the recurrent network so similar to those of the
feedforward network? This is because a globally stable recurrent network
can be approximated linearly around an equilibrium point as a feedfor-
ward network with the same architecture (same number of layers and same
number of neurons in each layer but without the recurrent connections).
The locally equivalent feedforward network has connection weights that
can incorporate the effects of the recurrent connections of the recurrent
network.

Despite their similarity, a globally stable recurrent network in general is
not strictly equivalent to a feedforward network with the same architecture,
in the sense that they cannot have an identical response to all possible
stimuli. Their similarity holds only for a single local region of the stimulus
space and cannot be extended globally. An explicit example is given in
appendix B.

Theorem 4 for recurrent networks may be generalized to gain functions
with cutoff or saturation in a manner similar to theorem 3. Since we have
already considered the parallels between the feedforward network and
globally stable recurrent network, further discussion will be omitted.

6 Extensions and Applications

6.1 Controllability of Network with Degenerate Weights. We have
shown that the exact same conditions on neural network architecture that
guarantee that for all neurons in any layer the optimal stimulus must lie on
the boundary of a compact stimulus space also guarantee that with suitable
inputs, one can locally control the activity of all of the neurons of a given
layer. However, the theorems in the preceding sections always assume
full rank or nondegenerate weight matrices for feedforward connections
between consecutive layers. Now we relax this condition and consider
the consequences of degenerate weight matrices for the controllability of
neurons by perturbations of stimuli.

In a network allowing degenerate connections between layers, how
many neurons in layer m can be controlled simultaneously and indepen-
dently by an external stimulus? Consider the rank of the final Jacobian J,
which is 9r,,/9x in equation 4.5 for feedforward networks or du,,/9x in
equation 5.11 for recurrent networks. The rank of Jacobian J is equal to the
maximum number of neurons in layer m that can be controlled simulta-
neously and independently by the stimulus x. The rank may be measured
experimentally by first estimating J locally around some network state us-
ing equation 4.17. A perturbation of response pattern can be produced by a
suitable stimulus only if it lies in the range space of the Jacobian.

How is the rank of the final Jacobian determined by the architecture
of the network? Consider the same feedforward network as in theorem 1,
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except that now we allow arbitrary numbers of neurons K, K», ..., K;; in
successive layers and allow degenerate weight matrices. Now equations 4.2,
4.5, and 4.8 remain valid, but inequality 4.9 and equation 4.10 no longer
hold. Since the overall Jacobian is J = J™J=1)  J@ by equation 4.5, we
have

rank J < min {rankJ®, ..., rankJ®} (6.1)

because the rank of a product of matrices cannot exceed the rank of any
matrix in the product. Using equation 4.8, we have rank J® = rank W <
min{K,, K,_1} since W has dimension K,, x K,_1. Substitution into equa-
tion 6.1 yields an upper bound,

rank ] < min{K1, Ky, ..., K;}. (6.2)

Therefore, the number of simultaneously and independently controllable
neurons in any given layer is bounded by the smallest number of neurons
in any lower layer of the network.

The upper bound can be improved if we know how many neurons in
each layer fall in the flat range of their gain functions (saturated or below
threshold). These neurons reduce the rank of J™ = GMW) in equation 4.2,
because G™ no longer has full rank due to zero diagonal terms. If layer n
has S, neurons in the flat range, then rank G® = K,, — S, and rankJ® <
K, — S,. This leads to a tighter upper bound:

rank] < min{K; — S, ..., K, — Sy} (6.3)

Although the upper bounds 6.2 and 6.3 are derived for feedforward net-
works, they also hold true for layered recurrent networks (see section 3.3).
Due to the similarity between the two types of systems (see section 5),
further discussion is omitted.

Suppose layer m has more neurons than the rank k =rank] of the
Jacobian. Then which particular subsets of k neurons in layer m are si-
multaneously and independently controllable? Select k neurons, and delete
all entries related to the unselected neurons from J. If the remaining matrix
has full rank, then these k neurons are controllable. The selection of the k
neurons may not be unique. We can also consider the range space of the
Jacobian matrix and identify all the neurons with indices corresponding
to the indices of the components of the range space. The number of the
identified neurons should be no less than k, and any k of these identified
neurons can be controlled simultaneously and independently.

The layer with the smallest number of neurons forms an information pro-
cessing bottleneck according to equations 6.2 and 6.3, and this consequence
might imply that in sensory systems, the maximum number of neurons in a
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higher stage of processing, which can be simultaneously and independently
controlled, is limited by the number of neurons in the bottleneck stages. For
instance, in the cat auditory system, the bottleneck actually occurs at the
input layer since there are only 3000 inner hair cells (Ryugo, 1992). This
would imply that at most, this number of cells at higher processing stages
would be simultaneously and independently controllable using sound in-
puts only.

6.2 Convergence and Divergence in Sensory Networks. The theorems
in this letter rely on the assumption of convergent network structure, with
fewer neurons in higher layers than in lower layers. Thus, it might appear
at first glance that these results would have very limited applicability to
the mammalian central nervous system, because in mammalian sensory
systems, there is in general a massive divergence of connections from the
periphery to higher processing areas. For instance, in the cat auditory sys-
tem, only 3000 inner hair cells are innervated by roughly 50,000 auditory
nerve fibers, which in turn provide divergent input to an even greater
number of neurons at the next stage of synaptic processing in the cochlear
nucleus (Ryugo, 1992; Young, 1998). Similarly, in the primate visual system,
the optic nerve represents an information bottleneck, as it contains only
about ~1 million fibers compared to the to the roughly 160 million neurons
downstream in one hemisphere of the primary visual cortex (Spear, Kim,
Ahmad, & Tom, 1996; O’Kusky & Colonnier, 1982; Schein & de Monastero,
1987).

However, the assumptions of the theorems are not as restrictive as they
first may appear. This is because they apply only to the actual functional
subnetwork which connects a neuron of interest to the sensory periph-
ery. All neurons that do not contribute to the response of the neuron of
interest can be ignored. This notion of a functional subnetwork is illus-
trated in Figure 5. In Figure 5A, neuron « in layer 3 is at the top of a
convergent pyramid (shaded), in which each neuron receives connections
from multiple neurons in the layer immediately below it, and so on recur-
sively all the way down to the periphery. Since only those shaded neu-
rons contribute to the response of neuron «, all other neurons can be
ignored. Such convergent functional subnetworks can be entirely com-
patible with a global divergence pattern with more neurons in higher
layers. Conversely, even when there is global convergence pattern with
fewer neurons in higher layers, the functional subnetwork may not be
convergent and our theorems still may not apply (see Figure 5D). Simi-
larly, this notion of a functional subnetwork can be readily generalized
to the layered recurrent networks considered in previous sections by in-
cluding all contributing neurons regardless of whether the connection is
feedforward or recurrent. So to reiterate, the theorems apply only to the
actual functional subnetwork, which connects the neurons of interest to the
periphery.
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Figure 5: The response of a neuron (« or §) is determined by the functional
subnetwork (shaded or dashed) that connects it to the periphery, regardless
of the total numbers of neurons in different layers. The examples here show
identical functional subnetworks for neurons « and 8 when the total numbers
of neurons from layer 1 to layer 3 are convergent (A), divergent (B), or have a
bottleneck (C). The theorems in this letter apply to neurons « and g in A, B,
and C, but not in D, because in the last case the functional subnetworks are not
convergent despite the fact that the total numbers of neurons in different layers
are convergent. In fact, neuron « in D does have an optimal stimulus in the
interior (the same example as in Figure 1C).

Consider the concrete example of the visual system. Although there
is massive divergence as one goes from the optic nerve to the cortex, it
is conceivable that the functional feedforward network connecting a sim-
ple cell in the primary visual cortex to the periphery is actually conver-
gent, because a single simple cell receives convergent inputs from multiple
cells in lateral geniculate nucleus (LGN) (Tanaka, 1983; Reid & Alonso,
1995). The number of LGN cells is approximately equal to the number of
retinal ganglion cells (approximately 1 million in macaque monkeys; see
Spear et al., 1996; Schein & de Monastero, 1987), which in turn is one or
two orders of magnitude less than the number of retinal photoreceptors
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(Packer, Hendrickson, & Curcio, 1989). Thus, it is quite possible that in
a feedforward approximation, a single V1 cell may sit on top of a con-
vergent functional subnetwork to which the theorems would apply (see
Figure 5C).

6.3 Nonmonotonic Responses. The theoretical result that the optimal
stimulus is expected to lie on the boundary of the stimulus set under very
general conditions may seem to contradict many experimental results that
show nonmonotonic responses. For example, a simple cell in primary visual
cortex has a preferred orientation corresponding to the peak response in
the orientation tuning curve (Hubel & Wiesel, 1962). Since nonmonotonic
responses are not uncommon among neurons in various sensory modalities,
one may wonder why the conditions of theorems are violated so often
given their generality. Here we show that nonmonotonic responses do not
necessarily violate the conditions of the theorems if the results are obtained
by using stimuli restricted to a lower-dimensional subset of the full stimulus
space. An optimal stimulus obtained this way may not be a genuine peak
in the stimulus-response relationship because small perturbations of the
stimulus in additional dimensions could further increase the response. The
possibility of true violation of the conditions of the theorems is discussed
at the end of this section.

The simple example in Figure 6 illustrates how restricting the stimulus
space to a lower-dimensional subset can lead to nonmonotonic responses.
All the neurons in this network have the standard logistic gain function
g(x) =1/(1 4+ e~™) as shown in Figure 1A. This network satisfies all the con-
ditions of theorem 1, and therefore in the two-dimensional stimulus space
(x1, x2), the optimal stimulus always lies on the boundary of any compact
set of stimuli (see Figures 6C and 6D). However, the situation changes
completely when the stimulus is restricted to a one-dimensional subspace.
Suppose we allow only input x; to vary freely while keeping the other in-
put fixed at x, = 0. Then the network becomes identical to the one in Figure
1C, which has a tuning curve with a peak. Thus, in the one-dimensional
stimulus space x1, the optimal stimulus no longer lies on the boundary (see
Figures 1C and 6B). Similarly, if we keep x; constant and allow x; to vary,
then the response to stimulus x, also has a peak (Figure 6B). In fact, by fixing
any one inputat any given level, the response to the remaining input always
has a peak (see Figure 6B). Nonmonotonic responses become possible here
because when the stimulus is restricted to a one-dimensional subspace, the
functional subnetwork has only one input but two neurons in the next layer,
and thus is no longer convergent. This example suggests that when a puta-
tive optimal stimulus is found in experiment, it may be useful to perturb the
stimulus by altering parameters in additional dimensions of the full stim-
ulus space so as to test whether it is possible to further increase the peak
response.
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Figure 6: A neuron whose optimal stimulus lies on the boundary of a stimulus
set may respond nonmonotonically if the stimuli are restricted to a lower-
dimensional subspace. (A) This network with two inputs is reduced to the
example in Figure 1C if input x; is fixed at x, = 0. The numbers by the arrows
indicate the synaptic weights. (B) The tuning curve for any one input (either
X1 Or Xx;) always has a peak when the other input is kept constant. The thick
lines indicate the special cases for x; =0 or x, = 0. (C) An arbitrary compact
stimulus set in the two-dimensional stimulus space. (D) The same stimulus
set as in C is shown together with the responses (shades of gray) and the
iso-response contours. Both the optimal stimulus, which elicits the maximum
response max, and the stimulus that elicits the minimum response 7, must lie
on the boundary of the stimulus set according to the theorems in this letter.

Now we return to the simple cell example and show that similar ideas
can be applied. Consider a single-layer feedforward model of a simple cell,
and let the response r be given by

N
r=g Zwix,- , (64)
i=1
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where g is a monotonically increasing gain function, the stimulus pattern
(%1, ..., xn) corresponds roughly to the activity in the retina or the lateral
geniculate nucleus, and the weight pattern (ws, ..., wy) is arranged prop-
erly to generate a preferred orientation (Hubel & Wiesel, 1962). This network
has only one weight vector, and theorem 1 applies trivially, leading to the
conclusion that the optimal stimulus should always lie on the boundary of
the stimulus set. It is known that the responses of many V1 neurons increase
monotonically with increasing stimulus contrast (Maffei & Fiorentini, 1973;
Albrecht & Hamilton, 1982). For these neurons, the optimal stimulus is a
bar of the best orientation presented at maximum contrast possible, and
this stimulus lies on the boundary of the stimulus space (see section 2). In
terms of the model in equation 6.4, the optimal stimulus should maximize
the luminance for all input pixels x; with positive weights (w; > 0) while
minimizing the luminance for all pixels with negative weights (w; < 0).
Even for higher-level visual areas like V4 and IT, the firing rates of many
neurons tend to increase with stimulus contrast (Cheng, Hasegawa, Saleem,
& Tanaka, 1994; Oram, Xiao, Dritschel, & Payne, 2002), thus suggesting that
the optimal stimuli in the pixel space for these potentially highly nonlinear
neurons might lie also on the boundary composed of maximum contrast
stimuli.

Nonmonotonic responses of the perceptron model in equation 6.4 are
possible only when the original stimulus set is restricted to a lower-
dimensional subset. When an oriented bar with fixed shape and lumi-
nance is used to measure the orientation tuning curve, the only freely vary-
ing parameter is the orientation angle. This stimulus subset is only one-
dimensional. As another example, when the vector length of the stimulus
pattern is fixed, namely, Y-, x? = constant, the optimal stimulus pattern
is proportional to the weight pattern, or (x1, ..., xn) o (w1, ..., wy). In this
case, the stimulus set is a sphere, which is of lower dimension than the
original stimulus set and has no interior (see section 2). Therefore, these
examples can be readily reconciled with the theorems in this letter.

In conclusion, the “optimal stimuli” found in many experiments that
show nonmonotonic or peaked tuning curves for various stimulus parame-
ters do not necessarily contradict the theorems in this letter, because peaking
in one dimension of the stimulus space does not imply a strict maximum in
the other stimulus dimensions. To test whether a putative optimal stimulus
is a true peak, one needs to perturb the stimulus along various dimensions
and examine whether any perturbation away from the optimum reliably
reduces the response. On the other hand, true optimal stimuli in the sense
of strict maxima in the stimulus-response relation may well exist in the sen-
sory pathways and serve useful functions, but these neurons would have to
violate the conditions of the theorems in this letter. For example, the weight
matrix might become degenerate in order to achieve stimulus specificity
by synaptic learning processes. Synaptic learning is implicated here be-
cause if one assigns the weights randomly by drawing from any continuous
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probability distributions, the weight matrix would be unlikely (with prob-
ability 0) to be exactly degenerate. Experimental examination of the re-
lationship between optimal stimuli and the underlying network architec-
ture would ultimately require the development of new methods that can
efficiently measure the connection weight matrices in sensory neuronal
networks.

6.4 Optimizing Quantities Other Than Firing Rate. In the preceding
sections, “response” of a neuron always refers to its firing rate. When the
response is taken as some quantity measured from the spike train other
than the firing rate, the conclusions in the preceding sections may or may
not hold. In this section we provide concrete examples to illustrate both
possibilities. For example, suppose that latency of the first spike is used to
quantify the response. Let ¥ = f(x) be the mean firing rate response of a
neuron to stimulus x. For Poisson model with mean rate f(x), the latency
has an exponential distribution, and its mean value is inversely proportional
to the mean firing rate:

t(x) = 1/f(x). 65)

Thus, the stimulus that maximizes the firing rate will minimize latency
and vice versa. The same conclusions we have derived for the mean fir-
ing rate measure will hold with the latency measure in this hypothetical
example.

For another example, the Fisher information measure may yield different
conclusions from that of the mean firing rate. Given the firing rate function
f(x) as considered above, the Fisher information for spikes within a unit
time interval is

I(x) = f'(x)*/ f(x), (6.6)

assuming Poisson spike statistics (Seung & Sompolinsky, 1993). The stimu-
lus that maximizes the Fisher information is a solution to the algebraic equa-
tion I’(x) = 0. In special cases such as when I(x) = W(f(x)) where ¥ is any
strictly monotonic function, the Fisher information I(x) and the firing rate
f (x) always have identical maximum and minimum. However, in general,
they are different. For example, in Figure 1B, the firing rate is maximized at
a boundary point of the stimulus set [a, b], that is, = argmax f(x) = b,
whereas the Fisher information reaches its peak at & = arg max I(x) =

In (& (1+ J217 + 124327 + V217 - 124/327) ) ~ 03212, which s an in-

terior point of the interval [a, b]. Therefore, the theorems in this letter
may not hold when the response is quantified by Fisher information. The
theorems also may not apply when the optimization involves an ensemble
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of stimuli rather than an individual stimulus, such as the mutual informa-
tion between stimuli and responses (Machens, 2002).

7 Discussion

We have analyzed how the structure of a neural network can constrain one
aspect of aneuron’s stimulus-response relationship: the location of the stim-
ulus eliciting the maximum firing rate. For any given neuron whose con-
nections with the periphery form a convergent network with more neurons
in lower layers and nondegenerate synaptic weight matrices, no optimal
stimulus can correspond to a strict maximum such that moving the stimulus
away from the optimum in any direction in stimulus space decreases the
firing rate. Instead, the stimulus that elicits the maximum response must al-
ways lie on the topological boundary of the set of permissible stimuli. Once
we know that the optimal stimulus lies on the boundary, we can avoid the
interior altogether and test only stimuli on the boundary to search for the
optimal stimulus, which may potentially reduce the number of experimen-
tal trials because the dimension of the boundary is typically one less than
the dimension of the full stimulus set.

These results hold not only for feedforward networks, but also for lay-
ered recurrent networks where neurons within each layer may connect
arbitrarily with one another, provided that the recurrent network is glob-
ally stable in the sense that its final equilibrium state depends on only
the stimulus, not its initial state. These stability conditions are biologi-
cally reasonable for sensory systems that are not inherently oscillatory or
chaotic.

The conditions for the nonexistence of optimal stimulus at the interior
also imply that each layer of the network is locally controllable in the
sense that one can always find a stimulus to produce any desired pattern
of perturbation to the activity of all the neurons in any given layer. The
manipulation of holding constant the activities of all neurons in a layer
except for one has been used as a technique in proving statement (b) of
theorem 3. In a real experiment, similar perturbation might help disso-
ciate the effects of the synaptic inputs arising from different groups of
neurons.

To apply the theoretical results to real systems, one has to examine the
topology of the stimulus set carefully, while keeping in mind that the input
stimulus should be similar to the actual inputs to the bottom layer of the
network. The examples of stimulus sets considered in this letter are simplis-
tic and intended for illustration purposes only. Further work is needed to
see whether the theory developed here can be applied to stimuli with com-
plex high-level sensory features, especially those that occur in the natural
environments.

The theoretical results obtained in this letter are probably more rele-
vant to sensory networks that can be well approximated as a feedforward
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network, especially in the periphery. We have generalized the theory to
layered recurrent networks that allow lateral connections within each layer.
A limitation of this approach is that when feedback connections are in-
cluded, the equivalent layered network is reduced to having only two
layers (see Figure 3D). The theory still holds true, but the results be-
come more limited. For high-level brain areas where detailed anatomi-
cal network structure is not generally known or even well studied, our
results might still help provide some information about the structure of
the functional neural network, which connects a neuron to the periph-
ery. For instance, given a neuron that exhibits a strict maximum in a
stimulus parameter space that resembles the actual input to the periph-
ery, then by the theorems derived in this letter, the functional subnetwork
must violate at least one of the conditions of the theorems so that the net-
work might be divergent or the synaptic weights might be degenerate (see
also section 6.3). Otherwise the theorems would hold and lead to logical
contradiction.

Since a neuron’s response to a single fixed stimulus varies randomly
from trial to trial, it would be useful to extend this work to a stochastic
framework. For the theorems to apply, one needs a sufficient number of
trials for each stimulus in order to reliably estimate the true mean firing
rate. Another limitation of this study is that we have only considered glob-
ally asymptotically stable recurrent networks and have demonstrated only
local controllability with sufficiently small change of the stimulus. It would
be of interest to address issues of global controllability in continuous dy-
namical models, preferably also in a stochastic framework. This study is
also limited in that it does not apply to transient responses and oscillatory
systems.

Adaptation and plasticity can alter the weight matrix in a neural network
and the slope and threshold of the gain functions. These time-varying fac-
tors can greatly reduce the effectiveness of online optimization procedures.
The theorems in this letter could still hold as long as the gain functions re-
main monotonically increasing, and the synaptic changes do not make the
weight matrix degenerate. In such situations, the optimal stimulus would
still be confined to the boundary of the stimulus set, although its exact loca-
tion could drift along the boundary as adaptation and plasticity are taking
place. So the theory might still help us avoid searching the interior of the
stimulus space.

Previous studies have employed various methods to find the opti-
mal stimulus, such as reverse-correlation methods (de Boer & Kuyper,
1968; deCharms, Blake, & Merzenich, 1998), iterative online maximiza-
tion of the firing rate (Harth & Tzanakou, 1974; Tzanakou, Michalak, &
Harth, 1979; Nelken, Prut, Vaadia, & Abeles, 1994; Anderson & Micheli-
Tzanakou, 2002; Bleeck, Patterson, & Winter, 2003; O’Connor, Petkov, &
Sutter, 2005; Bandyopadhyay & Young, 2005), and maximization of mu-
tual information between stimulus and response ensembles (Machens,
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2002). The basic reverse-correlation method is based on linear stimulus-
response relation, similar to a perceptron model (see section 6.3). As ex-
plained in section 6.3, the existence of an optimal stimulus in the interior
of a restricted stimulus space does not necessarily violate the conditions
of the theorems in this letter. Our results here apply only to firing rate
maximization for systems whose underlying functional subnetworks are
convergent. If the sensory stimuli are defined in a space isomorphic to
the periphery, then one need only to search the boundary of this space
to find the optimal stimulus. For maximizing criteria other than firing
rate, the results in this letter may no longer hold true except for spe-
cial cases when a criterion is monotonically related to the firing rate (see
section 6.4).

Finally, this work might be applicable to the problem of neural network
inversion, which is to find the level set consisting of all the inputs that lead
to the same output in a trained neural network (Williams, 1986; Jensen et al.,
1999). Finding the optimal stimulus for a neural network may be regarded
as a special case of neural network inversion if the maximum response is
known, and previous studies in both neuroscience and engineering have
made use of this type of procedure (Lehky, Sejnowski, & Desimone, 1992;
Jensen et al., 1999). The inversion may help analyzing network models
derived from stimulus-response data of real neurons (Lehky et al., 1992;
Lau, Stanley, & Dan, 2002; Prenger, Wu, David, & Gallant, 2004). Our work
suggests that for a neural network with strictly increasing gain functions,
like the sigmoid units in connectionist models, the search space for the
optimal input for the network can be potentially reduced to the boundary
of the input space.

Appendix A: A Globally Stable Recurrent Network with a Degenerate
Linearized System

The example that follows demonstrates that global stability of a recurrent
network does not always guarantee that its linearized system is nondegen-
erate. A stable linear system is automatically nondegenerate. This is why
condition 4 of theorem 4 explicitly requires the stability of the linearized
system.

Consider a network of two neurons sending excitatory connections to
themselves and to each other, all with the same weight 1/2, and assume that
each neuron receives the same stimulus inputx. The dynamical equations
are

dUl 1 1
ﬁ——vl + Eg(v1)+ Eg(vz)+x, (A1)
d 1 1
2=+ Sg() + 58() +x. (A2)
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where the gain function is g(v) = tanh(v). Subtracting the two equations
yields

L1 =1 = ~(01 — ). (A3)

Therefore, the states of the two neurons always become identical over time
regardless of the initial states and the input x. Writing v; = v, = v, we
condense equations A.1 and A.2 into a single equation:

d

& V4o +x. (A4)
dt

For any input x, this system always approaches a single equilibrium state
given by

—u+gw)+x=0, (A.5)

which has a unique solution for any input x because the line u — x always
has a unique intersection with the gain function g(u) = tanh u whose max-
imum slope is 1.

This network is globally stable because for any given stimulus x, the
system always approaches a single equilibrium state given by equation A.5
regardless of the initial state. On the other hand, the matrix as defined by
equation 5.4 is

M(u)=((1) (f)—g;”)(} }) (A.6)

which is degenerate when u = (u, u) = (0, 0), which occurs for x =0 in
equation A.5. Equation 5.6 for the linearized system around (0, 0) becomes

1 1

d (z1) _ 2 2 2

@2 2)). wr
2 2

which is degenerate, with eigenvalues 0 and —2. By requiring that the
linearized system be stable, as in condition 4 of theorem 4, it is guaranteed
also to be nondegenerate, as needed in the proof of the theorem.

Appendix B: Nonequivalence of Recurrent and Feedforward
Networks

In the main text, we have summarized qualitatively similar results for
two very different neural network architectures: feedforward networks and
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globally stable recurrent networks. One possible explanation for the simi-
larity is that the equilibrium state of a recurrent network in theorem 4 can
be represented exactly by some equivalent feedforward network having the
same number of layers and neurons, but possibly having different feedfor-
ward weights and gain functions. Here we provide a counterexample to
show that this is not generally true.

Consider a two-layer recurrent network with two excitatory neurons
connected reciprocally by the weight matrix

0 1
T= [8 0], (B.1)

where 0 < ¢ < 1, and the 0 diagonal entries mean no self-connection. The
two neurons 1 and 2 receive distinct input x; and x,, respectively, and obey
the dynamical equations

d

Tvtl =—v1 + v+ X1, (B.2)
dvz

ﬁ =—1 +¢€ tanh v + Xp, (B3)

with the gain functions g1 (#) = tanh u and g»(1) = u. This network is glob-
ally asymptotic stable because matrix S defined by equation 5.14 is positive
definite; that is,

1 1+e¢
el 1 Ty _ 2
S =DG —E(T—l—T)— lte : (B.4)
2

has positive eigenvalues 1+ £ for 0 < ¢ < 1. Here both the decay rate

matrix D and the maximum gain slope matrix G = diag(3], 3}) are the
identity matrix.

This recurrent network satisfies all the conditions of theorem 4. We show
that its equilibrium state cannot be represented exactly by any feedforward
network of the same size. Using (i, u,) instead of (vi, v2) to denote the
equilibrium state, we have

Uy =up + x1, (B.5)
Uy = ¢ tanh uy + xp. (B.6)

Substituting equation B.6 into B.5 yields

F(uy,x) =u; —etanhuy —x =0, (B.7)
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where x =x; +x, is the combined input. Since dF (u1, x) / oup =1-—
e(tanhu) # 0 for 0 <& <1 and 0 < tanh’ < 1, the implicit function the-
orem (Rudin, 1976) guarantees the existence of an input-output function
for neuron 1 in the equilibrium state:

up = f(x) = f(x1 + x). (B.8)
The input-output function for neuron 2 follows from equations B.8 and B.5:
up = f(x +x) — x. (B.9)

Equations B.8 and B.9 can be implemented by a three-layer feedforward net-
work (interpreting f as a gain function), but not by a two-layer feedforward
network.

Seeking a contradiction, suppose that a two-layer feedforward neural
network with two neurons always has the same output as the recurrent
network in the equilibrium state. Write the outputs of the two neurons as
S1(wi1x1 + wi2x2) and Fo(wz1x1 + waxz), where the weights w;; and gain
functions g; can be freely chosen. Since the output of neuron 2 must match
its recurrent network counterpart for the special case x; = 0, we have

S2(wnx2) = ga(u2) = f(x2), (B.10)

where the last step follows from g»(u;) = u; and equation B.9. It follows
from equation B.10 that the gain function g, must be of the form

z
3 (z) = — ). B.11
20) f<w22> (B11)
Similarly, for x, = 0, we obtain $»(w21x1) = g2(12) = f(x1) — x3 and
z z
H2)=fl— ) - —. B.12
w0 = () - o (B.12)

Consistency requires that equations B.11 and B.12 be identical, which is
equivalent to that

flkx) = f(x)—x (B.13)

for all x and for some fixed k # 1 (otherwise, k = 1 in equation B.13 would
imply x = 0). It follows from equation B.13 that f(x) = a¢ + a;x. To see this,
assuming that the Taylor series f(x) = Y .-, a,x" is convergent, we rewrite
equation B.13 as ) ;2 ja,k"x" = Y77 a,x" — x. Since the coefficients of the
same order on both sides of the equation must be equal, we have a,k" = a,
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for all n > 2, which implies a,, = 0 since k # 1. The linear function f(x) =
ag + a1x contradicts the fact that f(x) must satisfy the nonlinear equation
f(x) — etanh f(x) —x = 0, according to equations B.7 and B.8. Hence this
feedforward network cannot be equivalent to the recurrent network across
all inputs.
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