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It is generally unknown when distinct neural networks having different
synaptic weights and thresholds implement identical input-output trans-
formations. Determining the exact conditions for structurally distinct yet
functionally equivalent networks may shed light on the theoretical con-
straints on how diverse neural circuits might develop and be maintained
to serve identical functions. Such consideration also imposes practical
limits on our ability to uniquely infer the structure of underlying neural
circuits from stimulus-response measurements. We introduce a biologi-
cally inspired mathematical method for determining when the structure
of a neural network can be perturbed gradually while preserving func-
tionality. We show that for common three-layer networks with convergent
and nondegenerate connection weights, this is possible only when the
hidden unit gains are power functions, exponentials, or logarithmic func-
tions, which are known to approximate the gains seen in some biological
neurons. For practical applications, our numerical simulations with finite
and noisy data show that continuous confounding of parameters due to
network functional equivalence tends to occur approximately even when
the gain function is not one of the aforementioned three types, suggesting
that our analytical results are applicable to more general situations and
may help identify a common source of parameter variability in neural
network modeling.

1 Introduction

An open problem in theoretical neuroscience is to determine when it is
possible for distinct neural network models, such as those having differ-
ent synaptic weights and thresholds, to give rise to identical transforma-
tions of inputs to outputs. Such networks are called functionally equivalent,
and this concept is best illustrated by concrete examples of hierarchical or
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Figure 1: Functionally equivalent neural networks have diverse mechanisms
by which the synaptic weights or other parameters can change gradually with-
out affecting the overall input-output function. The strength of each weight is
indicated by the line thickness. (a) In the simplest three-layer network with
a hidden unit having threshold linear gain (inset), an increase of the output
weight v can be compensated precisely by a decrease of the input weight w as
long as their product (wv) is conserved, yielding an identical input-output func-
tion for all possible inputs. (b) The two hidden units with identical input weight
vectors and an arbitrary gain behave as identical twins. As long as the sum of
the output weights (v1 + v2) is conserved, an identical input-output function
will result. (c) The two hidden units have gain functions that are logarithmic
for inputs larger than 1. For this network, any values of the input weights with
the same product (w1w2) yield identical input-output relationship for all inputs
above 1.

feedforward neural network models (see Figure 1). Here in each pair, the
two networks differ in the strength of their synaptic connections, but they
always respond identically to all input stimuli, making them functionally
indistinguishable. The precise conditions under which the input-output
transformation implemented by a neural network uniquely determines its
structural parameters such as synaptic weights and thresholds is a funda-
mental theoretical problem that has not been solved completely. Previous
studies have analyzed standard feedforward models or multilayer percep-
trons (Rumelhart, Hinton, & McClelland, 1986) such as those in Figure 2,
and have shown that under special assumptions on the hidden unit gain
functions (input-output relationship for individual neurons), the overall
input-output relationship of the network uniquely determines all network
parameters, including synaptic weights and thresholds, up to permuta-
tion of neurons and regrouping of identical neurons (Albertini, Sontag, &
Maillot, 1993; Chen, Lu, & Hecht-Nielsen, 1993; Fefferman, 1994; Kurkova
& Kainen, 1994; Sussman, 1992). As a consequence, the entire structure of
a neural network, including every parameter in the hidden layers, may
in principle be recovered completely from stimulus-response data alone.
However, these uniqueness results rely on highly restrictive assumptions
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Figure 2: For the three-layer neural networks illustrated here, all possible
mechanisms of functional equivalence can be identified under some general
assumptions. (a) The simplest network has a single hidden unit with gain func-
tion g. (b) A network with a single hidden unit that has n independent inputs
x1, . . . , xn, weighted by the input weights w1, . . . , wn. (c) A network with n in-
puts, m hidden units, and a single output unit. The gain functions of different
hidden units may differ from one another. (d) In a network with multiple out-
put units, a single output unit depends on the inputs in the same way as the
network in c.

on the hidden unit gain functions, for instance, sigmoidal shape or asymp-
totic constancy, and hence do not accommodate all of the counterexamples
shown in Figure 1. Furthermore, these uniqueness results assume that noise-
less and potentially unlimited input-output data are available, thus limiting
their applicability to modeling real neurophysiology data.

Determining when structurally distinct neural networks are functionally
equivalent is a basic theoretical problem that has many practical implica-
tions. Hierarchical neural network models have been used in many pre-
vious studies to account for the stimulus-response properties of nonlinear
neurons (Lau, Stanley, & Dan, 2002; Lehky, Sejnowski, & Desimone, 1992;
Prenger, Wu, David, & Gallant, 2004; Wu, David, & Gallant, 2006; Zipser &
Andersen, 1988). In principle, knowing the network architecture, gain func-
tions of individual neurons, and the synaptic strengths and thresholds
amounts to having a complete characterization of the stimulus-response
properties of the neural network. The nonexistence of a unique relationship
between a neural network’s structure and its function would imply the
impossibility of uniquely identifying the neural network from stimulus-
response data alone. On the other hand, it might be biologically useful
to have distinct networks that are capable of implementing an identical
input-output function. For instance, if the function implemented by a neu-
ral network does not require a unique network structure, then when one
synapse in a network is damaged, other synapses can be used to compen-
sate for the damage and restore the original input-output function. Another
related question is how diverse circuits in different brains could carry out
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identical functions, given that the synaptic connections in larger brains can-
not be determined completely by genetic information so that the circuits in
different individuals are unlikely to be identical. From this point of view,
it is also of interest to understand the precise conditions for functionally
equivalent networks.

In this article, we develop a biologically motivated approach to study the
problem of neural network uniqueness. We ask when it is possible to slightly
modify the parameters of a neural network while keeping its input-output
relationship constant. This approach is sensible since changes in biological
parameters like synaptic strength, resting potential, and threshold tend to
be gradual and incremental. It allows us to derive a differential equation
that specifies the precise conditions under which any neural model permits
continuous modifications of its parameters while leaving functionality un-
changed. While the equation holds true for all parametric models, we apply
it to popular three-layer neural network models that have been widely used
in various disciplines, including modeling neurophysiology data.

Our analysis leads to a complete classification of the solutions for ad-
missible gain functions of three-layer networks with convergent and non-
degenerate weights, given the constant input-output constraint. We show
that one may continuously modify network parameters while preserving
functionality only when the hidden unit gain functions are given by power
functions, the exponentials, or the logarithmic functions (see Figures 1a and
1c for special cases and Figure 3 for more general cases). These special forms
of gain functions may approximate the input-output properties of some bi-
ological neurons (Anderson, Lampl, Gillespie, & Ferster, 2000; Ermentrout,
1998; Gabbiani, Krapp, Koch, & Laurent, 2002; Smith, Nelson, & Du Lac,
2002; Stafstrom, Schwindt, & Crill, 1984). We will also extend the results to
other types of gain functions, including the sigmoid and hyperbolic tan-
gent commonly used in neural models, because they may approximate a
power, exponential, or logarithmic function over limited ranges of inputs,
especially for finite and noisy physiological data.

2 A Mathematical Condition for Functionally Equivalent Neural
Networks

The output of a neural network is determined by both the input and the
parameters that completely specify the network itself, including the input-
output properties, or gain functions, of individual neurons and the synaptic
connections between neurons. Following the biological motivation men-
tioned above, we derive a differential equation that tells us when it is possi-
ble to slightly modify the parameters of a neural network without altering
its input-output relationship. The response r of an output neuron at the top
of a feedforward network (see Figure 2) can be written as

r = f (x, θ ) , (2.1)
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Figure 3: Only a few types of gain functions permit continuous functional
equivalence in a generic three-layer network. (a) A three-layer network allows
functional equivalence when the hidden unit gain functions are power, expo-
nential, or logarithmic functions, with possible zero subthreshold regions. The
three left-most panels show threshold power functions having linear (α = 1),
compressive (α < 1), and expansive (α > 1) shape. The two right-most pan-
els show an exponential (left) and a threshold logarithmic function (right).
(b) Experimental data from real neurons with input-output relationships that
approximate the functional forms in panel a. Data were digitized from Smith
et al. (2002) for the power law fit with α = 1, Stafstrom et al. (1984) for α < 1,
and Anderson et al. (2000) for α > 1, and from Gabbiani et al. (2002) for the
exponential fit.

where x = (x1, . . . , xn) is the stimulus or the input to the n neurons at the bot-
tom of the network, and the parameter set θ = (θ1, . . . , θk) includes the con-
nection weights and the thresholds of all neurons in the network. The
input-output relation specified by the function f depends implicitly on the
choice of the gain functions for the individual neurons. Although only a sin-
gle output neuron is considered here, there is no loss of generality because
different output neurons in a feedforward network respond independently
of one another (see Figure 2d).

Two networks with distinct parameter sets, θ and θ̃ , are called function-
ally equivalent if their outputs are always identical for all possible inputs,
namely, f (x, θ ) = f

(
x, θ̃

)
for all input x. The case where the parameter

sets θ and θ̃ differ only slightly corresponds to biological networks that
undergo parameter modifications in a gradual and incremental manner.
If the parameters of a neural network can vary continuously without af-
fecting the input-output relationship, we say these functionally equivalent
networks form a continuous equivalence class. We also say that the network
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parameters that can vary together without affecting functionality are con-
tinuously confounded.

A necessary and sufficient condition for a neural network f (x, θ ) to
permit a continuous equivalence class of functionally equivalent networks
is that there exists a set of coefficients q1 (θ ) , . . . , qk (θ ) such that

k∑

i=1

qi (θ )
∂ f (x, θ )

∂θi
= 0 (2.2)

for all possible input x. The coefficients qi (θ ) may depend on the
parameters θ but not on the input x, and they can be chosen freely, with
the exception that the trivial choice where all qi (θ ) ≡ 0 is not allowed. To
see why the confounding equation 2.2 holds, fix the response r in equation
2.1, and consider an infinitesimal change of the parameters by taking the
derivative with respect to a continuous variable t, which could be time or
an arbitrary one-dimensional continuous index for equivalent networks.
Since the response remains unchanged, we obtain by the chain rule that

∂ f (x, θ )
∂t

=
k∑

i=1

∂ f (x, θ )
∂θi

dθi

dt
= 0, (2.3)

which yields equation 2.2 by setting qi (θ ) = dθi /dt. Here each qi (θ ) is in-
dependent of x because dθi /dt describes how the parameter is changing
and should not depend on the stimulus x. The condition in equation 2.2
is also sufficient because once equation 2.2 holds, we can solve the ordi-
nary differential equations dθi /dt = qi (θ ) (i = 1, . . . , k), and the solutions
θ1 (t) , . . . , θk (t) satisfy equation 2.3, meaning that these parameters can vary
continuously with index t without affecting the output.

For a geometric interpretation of equation 2.2, rewrite it as a dot product:

q · ∇ f = 0, (2.4)

where q = (q1, . . . , qk) is a vector field in the network parameter space θ =
(θ1, . . . , θk) and ∇ f = (∂ f /∂θ1, · · · , ∂ f /∂θk) is the gradient of the response
with respect to these parameters. Suppose the vector field q = (q1, . . . , qk)
satisfies equation 2.4 for all inputs x. Then we can perturb the parameters
along the direction of vector q without affecting the value of the function f ,
because the perturbation is orthogonal to the gradient ∇ f . The choice of q is
not unique because there may exist multiple directions that are orthogonal
to the gradient ∇ f at each given location. Moreover, if q = (q1, . . . , qk)
satisfies equation 2.4, so does φq = (φq1, . . . , φqk) for any scalar function φ

of θ .



Modifying a Neural Network Gradually Without Changing Its Output 7

The condition for continuous confounding given by equation 2.2 is very
general because it holds true for any smooth system that can be described by
an input, an output, and a set of parameters. Although the basic equation 2.2
does not require any specific assumptions on the network architecture, in
the rest of this article we will focus on the three-layer feedforward networks
as in Figure 2 because this special case allows complete solutions with
interesting biological interpretations.

3 The Simplest Neural Network That Requires a Power Gain Function
for Parameter Confounding

We use the simplest network (see Figure 2a) to show how equation 2.2 can be
applied to derive the form of the gain function. For simplicity, from now on
we will ignore any nonlinear gain function for the output neuron, following
a common practice in theoretical analysis, since the final nonlinearity can
be readily added later.

We show that the simplest three-layer model as shown in Figure 2a
allows continuous parameter confounding only when the gain function is
a power function. Here the hidden unit has gain function g, input weight
w, and output weight v. The response of the output neuron is

r = f (x, θ ) = vg (wx) , (3.1)

where x is the input and θ = (θ1, θ2) = (v,w) is the parameter set. We assume
v �= 0 and w �= 0 because otherwise the neuron would have either no input
or no output. Equation 2.2 becomes

q1
∂ f
∂v

+ q2
∂ f
∂w

= q1g (wx) + q2vxg′ (wx) = 0, (3.2)

where g′ is the derivative of g, and coefficients q1 and q2 can be chosen
freely as long as they do not vanish at the same time. Define a new variable
u = wx and rewrite 3.2 as

q1g (u) + qug′ (u) = 0, (3.3)

with q = q2v/w. To solve equation 3.3, consider the following two cases,
which are labeled as 3(i) and 3(ii), with “3” referring to section 3. Hereafter
we will always include the section number for clear reference:

Case 3(i): q = 0. Since now q2 = qw/v = 0, we must have q1 �= 0 because
q1 and q2 are not allowed to vanish at the same time in the confounding
equation, 3.3. Thus equation 3.3 is reduced to q1g (u) = 0, which yields the
trivial solution g (u) = 0.



8 C. DiMattina and K. Zhang

Case 3(ii): q �= 0. To find the nontrivial solution g (u) �= 0, rewrite equation
3.3 as g′ (u)

/
g (u) = α/u with α = −q1/q to obtain ln

∣
∣g (u)

∣
∣ = α ln |u| + C ,

or

g (u) = A|u|α , (3.4)

where C and A are free parameters or integration constants. This solution
includes the special case α = −q1/q = 0 or g (u) = A. The trivial solution
g (u) = 0 may be accommodated formally as the special case of equation 3.4
with A = 0.

Thus, the general solution to differential equation 3.3 is a power function:
g (u) = A|u|α , where A and α are free parameters. The special case A = 0 is
the trivial solution g (u) ≡ 0, which is useful for accommodating zero firing
rate for subthreshold stimuli. Since a biological gain function is typically
monotonically increasing and the output firing rate cannot be negative, we
require α > 0, A ≥ 0, and restrict the input to u > 0. Thus, the final solution
is

g (u) =
{

Auα u > 0
0 u ≤ 0 , (3.5)

which is illustrated in Figure 3a (three left-most panels). The solution, equa-
tion 3.5, satisfies the original equation, 3.3, for all input u, provided that
α > 1. When α ≤ 1, however, the threshold u = 0 becomes a singular point
at which g (u) is not differentiable and the original equation, 3.3, breaks
down. Because approximating biological gain functions by power functions
sometimes requires an exponent α ≤ 1 (see Figure 3b, left-most two panels),
we allow α ≤ 1 in solution 3.5, with the understanding that a singularity is
present at the threshold.

In this simple example, the gain function must be a power function to
allow continuous confounding of parameters. The linear example in Figure
1a is the special case with α = 1. Intuitively, the confounding mechanism is
that any increase (or decrease) in the input weight w can be compensated
by a proper decrease (or increase) of the output weight v, so that output
neuron would feel no difference. For a closer examination of the parameter
confounding, we substitute solution 3.5 into equation 3.1 to obtain the final
input-output relation: r = A(vwα) xα for x > 0, and r = 0 otherwise. Given
a new set of parameters (ṽ, w̃), as long as

ṽw̃α = vwα, (3.6)

we have an identical input-output relationship. For an explicit demonstra-
tion using an index t, we set ṽ = vt−α and w̃ = wt so that equation 3.6
always holds as t varies continuously.
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4 A Network with a Single Hidden Unit Requires Either Power or
Exponential Gain Function

A new type of parameter confounding involving the exponential gain func-
tion occurs when a threshold or bias parameter w0 is included for the hidden
unit. In this section, we consider separately the case with a single input and
the case with multiple inputs.

4.1 Single Hidden Unit with a Single Input and a Threshold Param-
eter. Consider a slightly more general model by adding a threshold pa-
rameter w0 to the model considered in the previous section (see Figure 2a).
We show that in this case, a new type of parameter confounding involving
exponential gain functions occurs. Now the response to input x is

r = f (x, θ ) = vg (w0 + wx) , (4.1)

where the parameter set is θ = (θ1, θ2, θ3) = (v,w0, w), with w �= 0 and v �= 0
as before. Now equation 2.2 becomes

q1
∂ f
∂v

+ q2
∂ f
∂w0

+ q3
∂ f
∂w

= q1g (w0 + wx) + (q2 + q3x) vg′ (w0 + wx) = 0, (4.2)

which holds for all x for some fixed coefficients q1, q2, and q3. Define a new
variable u = w0 + wx and rewrite equation 4.2 as

q1g (u) + (a + bu)g′ (u) = 0 (4.3)

with

a = q2v − q3w0v/w, b = q3v/w. (4.4)

Equation 4.3 always has a trivial solution g (u) = 0. All other solutions are
classified into the following three cases:

Case 4.1(i): q1 = 0.

g (u) = A (4.5)

is the solution, with A an arbitrary constant. In this case, equation 4.3
becomes (a + bu)g′ (u) = 0, which implies either g′ (u) = 0 or a + bu = 0.
The former yields solution 4.5. The latter, a + bu = 0, holds for all u only
if a = b = 0, which by equation 4.4 implies q1 = q2 = q3 = 0, a situation
that is not allowed in confounding equation 4.2.
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Case 4.1(ii): q1 �= 0 and b = 0.

g (u) = Ae−(q1/a )u = Aeαu (4.6)

is the general solution, with Aa free parameter and α = −q1/a , assuming
a �= 0. If a = 0, equation 4.3 becomes q1g (u) = 0, which yields the trivial
solution g (u) = 0.

Case 4.1(iii): q1 �= 0 and b �= 0.

g (u) = A1 |a + bu|−q1/b = A|u − B|α (4.7)

is the general solution, where α = −q1/b, B = −a/b, and A1 and A are
free parameters.

Since the solutions in the three cases are obtained under logically mu-
tually exclusive conditions for the coefficients, one cannot arbitrarily take
pieces of different solutions and connect them together as a new solution.
The only exception is that all three cases are compatible with the trivial
solution g (u) = 0, which may be also regarded as a special case of the
three solutions above with A = 0. The power solution in equation 4.8 is
obtained with the additional requirements that the gain function should
be nonnegative and monotonically increasing; that is, u1 < u2 should im-
ply 0 ≤ g (u1) ≤ g (u2). Therefore, one can take only the increasing half of
the power function and discard the decreasing half and replace it with the
trivial solution. The exponential solution is always positive and cannot be
connected continuously with the trivial solution.

In summary, the confounding equation 4.3 has two general solutions:
one is a power function of the form

g (u) =
{

A(u − B)α u > B
0 u ≤ B

, (4.8)

and the other is an exponential function of the form

g (u) = Aeαu, (4.9)

where A, α, and B are free parameters, and in both solutions we require
A ≥ 0 and α > 0 in order to ensure that the gain function is monotonically
increasing with the nonnegative firing rate.

The confounding mechanism for the exponential gain function in equa-
tion 4.9 is to compensate any increase (or decrease) of the output weight v

by a decrease (or an increase) of the bias w0 such that vew0 is conserved. For
the power gain function in equation 4.8, the input weight w is confounded
with the output weight v such that vwα is conserved, just as in equation 3.6
and the bias w0 also needs to be adjusted properly, as shown in section 6.
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4.2 Single Hidden Unit with Multiple Inputs. The most general model
with a single hidden unit is the one illustrated in Figure 2b with multiple
inputs plus a threshold parameter. This model yields exactly the same
three gain functions as in cases 4.1(i) to 4.1(iii) for a single input. To show
this, consider the response by the neuron in Figure 2b to stimulus x =
(x1, . . . , xn):

r = f (x, θ ) = vg

(

w0 +
n∑

i=1

wi xi

)

, (4.10)

where the parameter set is θ = (v,w0, w1, . . . , wn) with weights (w1, . . . , wn)
and threshold or bias w0. We require v �= 0 and the weights w1, . . . , wn not
all equal to 0 to ensure that the hidden unit receives some input and has an
output. Condition 2.2 becomes that

q
∂ f
∂v

+
n∑

i=0

qi
∂ f
∂wi

= 0 (4.11)

holds for all input x for some fixed coefficients q , q0, q1, . . . , qn that are
independent of x. Substitution of equation 4.10 into 4.11 yields

qg (u) +
(

q0 +
n∑

i=1

qi xi

)

vg′ (u) = 0, (4.12)

where u = w0 + ∑n
i=1 wi xi is the total input to the hidden unit.

To simplify equation 4.12, note that since it holds for arbitrary input
(x1, . . . , xn), we can fix all inputs to 0 except for one, say, xk , assuming wk �= 0.
At least one nonzero weight wk �= 0 (1 ≤ k ≤ n) exists, because otherwise
the neuron would receive no input at all. We allow xk to vary freely while
fixing all other inputs to 0 (xi = 0 for all i �= k). Now we have u = w0 + wk xk ,
and equation 4.12 is reduced to

qg (u) + (a + bu) g′ (u) = 0, (4.13)

the desired final equation, where a = q0v − qkw0v/wk and

b = qkv/wk . (4.14)

Since equation 4.13 is equivalent to equation 4.3 for neuron with a single
input, we must have the same three general solutions as in equations 4.5 to
4.7.
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Finally, we comment on how coefficients qi should be chosen. If there
is another nonzero weight wl �= 0 in addition to wk �= 0 (l �= k), then we
can also vary xl while setting all other xi = 0 (i �= l). The same procedure
above should lead to the same equation, 4.13, except that now parameters
a and b have different expressions, with each subscript k replaced by the
subscript l. Since changing the inputs should not affect the solution of the
gain function, parameters a and b obtained in different ways should be
identical. Thus, using equation 4.14, we should have b = qkv/wk = qlv/wl ,
which implies qk : ql = wk : wl . In general, for the original equation, 4.12, to
hold for arbitrary inputs, the following two vectors should be proportional:

(q1, q2, . . . , qn) = D (w1, w2, . . . , wn) , (4.15)

where D = b/v is the proportionality constant. This relation holds even
when some of the weights are zero because wi = 0 implies qi = 0. To see
this, note that if wi = 0, then input xi would have no influence on the activity
of the neuron, and thus in equation 4.12, we should have qi = 0 to nullify
the appearance of xi .

5 A Network with Multiple Hidden Units Requires Power, Exponential,
or Logarithmic Gain Functions

5.1 Overview of Main Results. In this section we consider the solutions
for gain functions in the most general three-layer networks. Since different
output neurons respond independently in a generic three-layer network
(see Figure 2d), we need only focus on a single neuron in the output layer
(see Figure 2c), with its output given by

r = f (x, θ ) =
m∑

i=1

vi gi

⎛

⎝wi0 +
n∑

j=1

wi j x j

⎞

⎠, (5.1)

where the gain functions gi and the biases wi0 all may vary from neuron
to neuron in the hidden layer. We assume each vi �= 0 because otherwise,
the hidden unit would have no output. The input weights to each hidden
unit are not allowed to vanish all at the same time because otherwise, the
hidden unit would have no input. Applying the confounding equation 2.2
to this model yields

m∑

i=1

qi gi (ui ) +
m∑

i=1

⎛

⎝qi0 +
n∑

j=1

qi j x j

⎞

⎠vi g′
i (ui ) = 0 (5.2)
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v (g2 + g3). Thus, the total output r = v1g1 (w1x) stays the same for any weights
v and w. (b) Continuous parameter confounding occurs in a four-layer network
with an arbitrary monotonically increasing gain function g in layer 2. The in-
verse function h = g−1 is also monotonically increasing and serves as a gain
function in layer 3. The output response r = vh (1g (wx)) = vwx stays the same
when vw is preserved. The confounded weights v and w are separated by a
middle layer. (c) The gain functions in Table 1 were derived under the assump-
tion that no other hidden units in the network have fully linear gain function.
Relaxing this assumption leads to new solutions for continuous confounding,
as shown here (see section 5.3).

with ui = wi0 + ∑n
j=1 wi j x j , for some fixed coefficients qi and qi j that are

independent of the input (x1, . . . , xn).
Solving the confounding equation 5.2 requires additional assumptions.

First note that if the weight matrix wi j is degenerate (see Figure 1b), or if
the network is divergent (m > n) with more hidden units than the number
of inputs, then arbitrary gain functions can be used to generate continuous
parameter confounding Figure 4a. That is, any given gain function can be
assigned to a hidden unit as a part of a solution to equation 5.2.

In the following, we assume a convergent network with nondegener-
ate weight matrix and show next that only a few types of gain functions
can permit continuous confounding. Here convergent means that the num-
ber of hidden units does not exceed the number of inputs (m ≤ n). Under
these assumptions, the activities of the hidden units can be controlled inde-
pendently and arbitrarily by the stimulus input (x1, . . . , xn). In particular,
we can use the input to alter only the activity of a single hidden unit i
while keeping the activities of all other hidden units constant (DiMattina
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Table 1: Classification of Gain Functions for Three-Layer Networks.

b = 0 b �= 0

q = 0 Linear solution: Logarithmic solution:
g(u) = Au + C g(u) = Aln |u − B| + C

q �= 0 Exponential solution: Power solution:
g(u) = Aeαu + C g(u) = A|u − B|α + C

Notes: The four types of gain functions are obtained by
solving equation 5.3, with all subscripts omitted for sim-
plicity. The classification is based on the coefficients b and
q in the original equation.

& Zhang, 2008). In this way, equation 5.2 can be reduced to a form that
explicitly involves only the gain function gi of a single hidden unit i ,

qi gi (ui ) + (ai + bi ui ) g′
i (ui ) + ci = 0, (5.3)

where the constants ai , bi , and ci are given by equations 5.15 to 5.17. To
obtain equation 5.3, we assume that no other hidden units in the network
have a fully linear gain function, which is a trivial message pass-through.
When this assumption is relaxed, the equation has an additional term linear
in ui and allows additional solutions, as will be discussed in section 5.3.

The solutions to differential equation 5.3 can be classified completely by
Table 1, according to whether the parameters qi and bi vanish. In Table 1,
the subscript i is omitted from parameters qi and bi for simplicity, and A,
B, C , and α are free parameters that are described in section 5.2.2. Among
the four types of gain functions (see Table 1 and Figure 3a), the power and
exponential functions have been considered in the preceding sections, up to
suitable scaling and shifting, whereas the linear function may be regarded
as a special case of the power function. What is new is the logarithmic gain
function, which allows confounding of the input weights of two separate
neurons (see Figure 1c). Explicit mechanisms of parameter confounding for
these gain functions are given in section 6.

5.2 Derivation of Confounding Equation 5.3 and Classification of Its
Solutions. In this section we derive the confounding equation 5.3 for the
generic three-layer network with multiple hidden units (see Figure 2c), and
then obtain all four solutions as summarized in Table 1.

5.2.1 Derivation of Confounding Equation 5.3. For the model in equation
5.1, the parameter set is θ = (v1, . . . , vm, w10, . . . , wm0, w11, . . . , wmn). Condi-
tion 2.2 for the existence of continuous equivalence classes now becomes
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that for some fixed coefficients qi and qi j that are independent of the stim-
ulus input, the equation

m∑

i=1

⎛

⎝qi
∂ f
∂vi

+
n∑

j=0

qi j
∂ f

∂wi j

⎞

⎠ = 0 (5.4)

holds for all stimulus input (x1, . . . , xn). Substitution of equation 5.1 into 5.4
gives

m∑

i=1

⎛

⎝qi gi (ui ) +
⎛

⎝qi0 +
n∑

j=1

qi j x j

⎞

⎠ vi g′
i (ui )

⎞

⎠ = 0 (5.5)

where

ui = wi0 +
n∑

j=1

wi j x j (5.6)

is the total input to hidden unit i . In vector matrix form, we can rewrite
equation 5.6 as

u = w0 + Wx, (5.7)

where u = (u1, . . . , um)T, w0 = (w10, . . . , wm0)T, x = (x1, . . . , xn)T, and W is
the m × n matrix with entry wi j .

We require that the activities of the hidden units can be independently
controlled by the input. That is, given any desired hidden layer activity
pattern u, there is always a suitable input x that can generate it according to
equation 5.7. This requires equation 5.7 to have a solution x for any given u.
The following two conditions ensure that the desired solution always exists:
(1) the number of hidden units does not exceed the number of inputs,
or m ≤ n, and (2) the weight matrix W is nondegenerate, or rank W = m
(DiMattina & Zhang, 2008). To obtain the three types of gain functions
in Table 1 and Figure 3, one cannot in general relax the requirement for
network convergence (m ≤ n), or the requirement for nondegenerate weight
matrix W. One may use arbitrary gain functions to achieve continuous
confounding when the network is divergent with m > n (see Figure 4a) or
when W is degenerate (see Figure 1b).

Under the two assumptions discussed above, the desired input always
exists:

x = W† (u − w0) , (5.8)
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where W† is Moore-Penrose generalized inverse, although the solution in
general is not unique. Rewrite equation 5.8 as

xj =
m∑

k=1

w
†
jk (uk − wk0), (5.9)

and then substitute it into equation 5.2 to obtain

m∑

i=1

(

qi gi (ui ) +
(

qi0 +
m∑

k=1

Dik (uk − wk0)

)

vi g′
i (ui )

)

= 0, (5.10)

where

Dik =
n∑

j=1

qi jw
†
jk (5.11)

is introduced for convenience. An equivalent matrix form of equation 5.11
reads

D = QW†, (5.12)

where D = {
Di j

}
is an m × m matrix, and Q = {

qi j
}

is an m × n matrix to
be solved. The general solution to equation 5.12 can be written as

Q = DW + Z
(
In − W†W

)
, (5.13)

where In denotes the n × n identity matrix, and Z is an arbitrary m × n
matrix (Ben-Israel & Greville, 2003). To see why this solution holds, first
note that Q = DW is a special solution to equation 5.12 because W is a
full rank m × n matrix with m ≤ n so that WW† = Im. A general solution to
equation 5.12 should allow an arbitrary additional term in the null space of
W†. The second term in solution 5.13, Z

(
In − W†W

)
, is indeed in this null

space because right-multiplying it by W† results in zero, by the identity
W†WW† = W†. We can always set Z = 0 to choose the special solution
Q = DW, which may be regarded as the multiple hidden units counterpart
to the proportionality relation 4.15 for a single hidden unit.

To simplify equation 5.10, note that the activity of each hidden unit can
be independently controlled by the stimulus. In particular, we can allow
the activity of a single hidden unit, say, ul , to vary freely while keeping
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the activities of all other hidden units constant, namely, ui ≡ Ui (i �= l). This
trick reduces equation 5.10 to a form that is about the single hidden unit l:

ql gl (ul ) + (al + blul ) g′
l (ul ) + cl + dlul = 0, (5.14)

where all the coefficients as given below are independent of variable ul :

al =
⎛

⎝ql0 +
m∑

k=1

Dlkwk0 +
∑

k �=l

DlkUk

⎞

⎠ vl , (5.15)

bl = Dllvl , (5.16)

cl =
∑

i �=l

qi gi (Ui ) +
∑

i �=l

⎛

⎝qi0 −
m∑

k=1

Dikwk0 +
∑

k �=l

DikUk

⎞

⎠ vi g′
i (Ui ), (5.17)

dl =
∑

i �=l

Dilvi g′
i (Ui ). (5.18)

Since equation 5.14 and the coefficient dl in equation 5.18 should not
depend on the level of the fixed activity Uk , which can be chosen arbitrarily,
we must have dl = 0 as long as none of the gain functions gi is linear. To
see this, we first show that in equation 5.18, we must have Dil = 0 for each
i �= l. Seeking a contradiction, suppose Dil �= 0. Then we could vary the hold
level Ui freely so that g′

i (Ui ) would also vary with Ui because gi is nonlinear.
Thus, dl would depend on the hold level Ui since we always require vi �= 0.
This contradiction implies that we must have Dil = 0 for all off-diagonal
elements i �= l. As a consequence, equation 5.18 is now reduced to dl = 0.
Thus we obtain the final confounding equation,

ql gl (ul ) + (al + blul ) g′
l (ul ) + cl = 0, (5.19)

for any hidden unit l = 1, . . . , m. This is the same as equation 5.3 in the
preceding section. If linear gain function is allowed for some hidden units,
we may have dl �= 0.

5.2.2 Classification of the Solutions to Confounding Equation 5.3. To solve
equation 5.3 or 5.19, first omit all the subscripts l for simplicity, and then
consider the following four mutually exclusive cases:

Case 5.2(i): q = 0 and b = 0. Equation 5.19 becomes ag′ (u) + c = 0, which
yields the linear solution

g (u) = − (c/a ) u + C = Au + C, (5.20)
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where A = −c/a and C is an arbitrary constant. Here a �= 0 is assumed
because otherwise the equation would be reduced to the degenerate
form c = 0.

Case 5.2(ii): q = 0 and b �= 0. Equation 5.19 becomes (a + bu) g′ (u) + c = 0,
which has as the general solution the logarithmic function

g (u) = − (c/b) ln |a + bu| + C1 = Aln |u − B| + C, (5.21)

where A = −c/b, B = −a/b, and C1 and C are arbitrary constants.
Case 5.2(iii): q �= 0 and b = 0. Equation 5.19 becomes qg (u) + ag′ (u) + c = 0,

which has as the general solution the exponential function

g (u) = Ae−(q/a )u − c/q = Aeαu + C, (5.22)

where C = −c/q and A are arbitrary constants. Here a �= 0 is assumed.
If a = 0, equation 5.19 becomes g (u) = −c/q , which may be regarded
formally as a special case of equation 5.22 with A = 0.

Case 5.2(iv): q �= 0 and b �= 0. The general solution to equation 5.19 is a
power function,

g (u) = A1 |a + bu|−q/b − c/q = A|u − B|α + C, (5.23)

where α = −q/b, B = −a/b, C = −c/q , and A1 and A are arbitrary
constants. Although the linear solution in equation 5.20 is derived under
a different condition, it may be regarded formally as a special case of the
power function 5.23.

A classification of all the solutions is summarized in Table 1. Compared
with the three solutions for a single hidden unit in section 4, the logarith-
mic gain function, equation 5.21, is a completely new solution, because its
parameter confounding requires two or more hidden units (see Figure 1c).
Another difference is the additional constant term, −c/q in equations 5.22
and 5.23 for both the exponential and the power gain functions. Since cl as
defined by equation 5.17 involves the gain functions of other hidden units,
it reflects the interaction between different hidden units. When all the con-
founded parameters involve a single hidden unit only and have nothing to
do with the other hidden units, all terms involving cl vanish, just as in the
case for a single hidden unit.

5.3 The Special Situation with Fully Linear Hidden Units. In this
section we have assumed that none of the hidden units has a fully
linear gain function, or g (u) = c1u + c2 for all u. If such a linear hid-
den unit is allowed, continuous confounding of parameters becomes
possible for additional new types of gain functions. We first illustrate
this situation with an explicit example and then derive the general
solutions.
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In the example in Figure 4c, the gain function g1 (u) = u is fully linear,
whereas the gain function g2 (u) = uα + u differs from the three types con-
sidered above, where α > 0 is a real number but not an integer. The response
to input x = (x1, x2)T is

r = v1
(
wT

1 x
) + v2

((
wT

2 x
)α + (

wT
2 x

))

= v2
(
wT

2 x
)α + (v1w1 + v2w2)T x. (5.24)

Let parameters vi and wi be replaced by the new values ṽi and w̃i (i =
1, 2). In order for the response to stay unchanged for all input x, both the
term with the exponent α and the linear term in equation 5.24 should stay
unchanged:

ṽ2
(
w̃T

2 x
)α = v2

(
wT

2 x
)α

, (5.25)

ṽ1w̃1 + ṽ2w̃2 = v1w1 + v2w2. (5.26)

These equations are satisfied by the following construction with a continu-
ous index t:

w̃2 = tw2, (5.27)

ṽ2 = t−αv2, (5.28)

ṽ1 = v1, (5.29)

w̃1 = w1 + (
1 − t1−α

)
(v2/v1) w2. (5.30)

Equations 5.27 and 5.28 ensure that equation 5.25 holds for all inputs x. The
new parameter ṽ1 can be picked arbitrarily, and equation 5.29 is a simple
choice. Equation 5.30 is obtained by solving for w̃1 from equation 5.26
using equations 5.27 to 5.29. Thus both equations 5.25 and 5.26 are satisfied,
creating continuous parameters confounding, with t = 1 corresponding to
the original parameters.

When linear hidden units are allowed, we need to consider the con-
founding equation 5.14 with dl �= 0. We omit the subscript l for simplicity
and write equation 5.14 as

qg (u) + (a + bu) g′ (u) + c + du = 0. (5.31)

The solutions to this equation are classified into five mutually exclusive
cases according to the values of the parameters. In all following solutions,
C0 is a free parameter:
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Case 5.3(i): q = 0 and b = 0. The solution is

g (u) = − (d/2a ) u2 − (c/a ) u + C0, (5.32)

where a �= 0 is assumed because if a = 0, equation 5.31 becomes degen-
erate: c + du = 0.

Case 5.3(ii): q = 0 and b �= 0. The solution is

g (u) = (
(ad − bc)

/
b2) ln (a + bu) − (d/b) u + C0. (5.33)

Case 5.3(iii): q �= 0 and b = 0. The solution is

g (u) = C0e−(q/a )u − (d/q ) u + (ad − qc)
/

q 2. (5.34)

Case 5.3(iv): q �= 0, b �= 0 and q + b �= 0. The solution is

g (u) = C0 |a + bu|−q/b + d (u − a )
/

q (q + b) + c. (5.35)

Case 5.3(v): q �= 0, b �= 0 and q + b = 0. The solution is

g (u) = − (
d
/

b2) (a + bu) (C0 + ln (a + bu)) + (bc − ad)
/

b2.

(5.36)

The first four cases correspond to the four cases considered in section
5.2.2, and the only difference is the additional linear term in u, which dis-
appears when d = 0. The power solution with a linear term explains why
the example in Figure 4c considered earlier in this section works. The case
5.3(v) is a new form of gain function: a product of logarithm with a linear
function. This new form occurs only when d �= 0.

5.4 Comparison with Biological Gain Functions. Several experimen-
tal studies investigating the relationship between the output firing rate and
either the current injected into a neuron or the mean membrane voltage
found neurons with gain functions that can be approximated by power law
or exponential functions (Anderson et al., 2000; Ermentrout, 1998; Gabbiani
et al., 2002; Smith et al., 2002; Stafstrom et al., 1984). A few examples of such
gain functions taken from real neuronal data are shown in Figure 3b. There
is also evidence from studies in locust visual neurons suggesting logarith-
mic transformation of sensory variables in dendrites, as part of a circuit
that implements multiplication by adding logarithmically scaled inputs in
the dendrites of a neuron, followed by an exponential transformation into
spiking rate (Gabbiani et al., 2002).

By visual appearance (see Figure 3), it may seem that the exponen-
tial function somewhat resembles the power function with exponent α > 1
while the logarithmic function resembles the power function with α < 1.
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This is not an accident because both the exponential and log functions can
be derived as limiting cases of power functions (see appendix A).

Although the data shown in Figure 3 are generally consistent with the
theory of continuous parameter confounding, the agreement does not prove
that the confounded parameters can indeed compensate each other in a bi-
ological network as predicted by the theory. This is because the data in
Figure 3 were obtained from a single neuron, while our confounding the-
ory always involves structural parameters such as weights and thresholds
coming from two or more neurons that form a network. To further exam-
ine this issue, one needs to measure network parameters simultaneously
from multiple neurons within the same network, under at least two sets
of conditions where the parameter values are allowed to vary while the
input-output function of the network is kept the same.

6 Explicit Indexing of Continuous Confounding of Parameters

For simple power law confounding between input and output weights (see
equation 3.6 and Figures 1a and 5), it is intuitively clear how a change of
one parameter can be compensated precisely by suitable change of another
parameter. For more complex forms of parameter confounding, it is not al-
ways obvious how different parameters can change simultaneously while
preserving network functionality. In this section we demonstrate explic-
itly how different parameters are confounded for various gain functions
derived in preceding sections. We use an arbitrary one-dimensional contin-
uous variable t as an explicit index, with the understanding that the choice
is generally not unique.

6.1 Index for Continuous Parameter Confounding for a Single Hidden
Unit. The most general situation here is a single hidden unit receiving
multiple inputs (see Figure 2b), and the gain function has three types of
solutions given by equations 4.5 to 4.7 as described in cases 4.1(i), 4.1(ii),
and 4.1(iii). The response in equation 4.10 can be written as

r = vg

(

w0 +
n∑

i=1

wi xi

)

= vg
(
w0 + wTx

)
, (6.1)

where w = (w1, . . . , wn)T is the weight vector and x = (x1, . . . , xn)T is the
input vector.

In case 4.1(i), the gain function in equation 4.5 is a constant, so that the
weight vector w and the threshold w0 can be changed arbitrarily without
affecting the output.
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Figure 5: Continuous parameter confounding in a simple network with power
gain function. (a) The network has input weight w, output weight v, and bias
w0. The hidden unit gain g is the same power function as illustrated in Figure 3b
(α < 1) and is given by equation 4.8 with the parameters A = 61.1, B = 0.837,
and α = 0.564. (b) The input-output data (circles) were generated by adding
Poisson noise to the expected responses of the model (black curve) to random
inputs. (c) Parameter estimates (dots) attained from the data set in b via least
squares. Different starting points for the optimization led to different estimates,
all of which lie along the power law confounding curves containing the true
parameters (triangles).

In case 4.1(ii), the gain function is the exponential function in equation
4.6, and the output in equation 6.1 becomes

r = vAeα(w0+wTx) = A(veαw0 ) eαwTx. (6.2)

To maintain the same input-output relation with a new set of parameters
w̃, ṽ, and w̃0, we need to have

(
ṽeαw̃0

)
eαw̃Tx = (veαw0 ) eαwTx for all x. This

requires w̃ = w and

ṽeαw̃0 = veαw0 . (6.3)
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An explicit construction that satisfies equation 6.3 with a one-dimensional
index t is

w̃0 = w0 + t, (6.4)

ṽ = ve−αt. (6.5)

Now equation 6.3 holds for arbitrary t, which can change continuously,
with t = 0 corresponding to the original values of the parameters. The way
to introduce the index is not unique, and another example that will become
convenient later is

ṽ = v + t, (6.6)

w̃0 = w0 + α−1 ln
(
v
/

(v + t)
)
. (6.7)

An intuitive explanation of the parameter confounding for exponential
function is that an increase (or decrease) of the output weight v can be
compensated by a proper decrease (or increase) of the threshold parameter
w0.

In case 4.1(iii), the gain function is the power function in equation 4.7,
and the output in equation 6.1 becomes

r = vA
∣∣wTx + w0 − B

∣∣α . (6.8)

Keeping the same input-output relation requires new parameters ṽ, w̃, and
w̃0 such that

ṽ
∣∣w̃Tx + w̃0 − B

∣∣α = v
∣∣wTx + w0 − B

∣∣α (6.9)

holds for all input x. The following construction with index t satisfies equa-
tion 6.9:

w̃ = wt, (6.10)

w̃0 = B + (w0 − B) t, (6.11)

ṽ = vt−α. (6.12)

When t = 1, the new parameters become identical to their original values.
It follows from equations 6.10 to 6.12 that we always have

w̃
/

(w̃0 − B) = w
/

(w0 − B), (6.13)

ṽ ‖w̃‖α = v ‖w‖α , (6.14)

ṽ (w̃0 − B)α = v (w0 − B)α . (6.15)
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Here equation 6.14 becomes ṽw̃α = vwα , the same as equation 3.6, if we
write the Euclidean norm of the weight vector w = (w1, . . . , wn)T as w =
‖w‖ =

√
w2

1 + · · · + w2
n, and similarly, w̃ = ‖w̃‖. Another equivalent index

formulation that will be used later is

ṽ = v + t, (6.16)

w̃ = (
v
/

(v + t)
)1/α w, (6.17)

w̃0 = B + (
v
/

(v + t)
)1/α (w0 − B) . (6.18)

An intuitive explanation of the parameter confounding for power function
is that an increase (or decrease) of the output weight v can be compensated
by a proper decrease (or increase) of the norm of the input weight vector
w. At the same time, the threshold parameter w0 also needs to be adjusted
accordingly.

6.2 Index for Continuous Parameter Confounding with Multiple Hid-
den Units. In this section, we demonstrate explicitly how the four types of
gain functions in Table 1 can give rise to continuous confounding of param-
eters through interaction of different hidden units. The output response in
equation 5.1 can be written as

r =
m∑

i=1

vi gi

⎛

⎝wi0 +
n∑

j=1

wi j x j

⎞

⎠ =
m∑

i=1

vi gi
(
wi0 + wT

i x
)
, (6.19)

where x = (x1, . . . , xn)T is the input vector and wi = (wi1, . . . , win)T is the
weight vector for hidden unit i . We consider separately the solutions given
by equations 5.20 and 5.21.

In case 5.2(i), the linear function gain function given by equation 5.20
may be regarded formally as a special case of the power function in case
5.2(iv) below.

In case 5.2(ii), consider a network with two hidden units 1 and 2, each
with a logarithmic gain function of the form in equation 5.21 with potentially
distinct parameter values as indicated by subscripts 1 and 2. The response
in equation 6.19 now reads

r =
2∑

i=1

(
vi Ai ln

∣∣wT
i x + wi0 − Bi

∣∣ + vi Ci
)
. (6.20)
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To keep the same the input-output relation for all input x, the new param-
eters (with a tilde) should be related to the original parameters by

2∏

i=1

∣
∣w̃T

i x + w̃i0 − Bi
∣
∣vi Ai =

2∏

i=1

∣
∣wT

i x + wi0 − Bi
∣
∣vi Ai

. (6.21)

An explicit construction of parameter confounding with a continuous pa-
rameter t is

w̃1 = ev2 A2tw1, (6.22)

w̃2 = e−v1 A1tw2, (6.23)

w̃10 = B1 + ev2 A2t (w10 − B1) , (6.24)

w̃20 = B2 + e−v1 A1t (w20 − B2) , (6.25)

which satisfy equation 6.21 for arbitrary t, with t = 0 corresponding to the
original parameter values. It follows from equations 6.22 and 6.23 that

w̃
v1 A1
1 w̃

v2 A2
2 = w

v1 A1
1 w

v2 A2
2 , (6.26)

where wi = ‖wi‖ and w̃i = ‖w̃i‖ are the Euclidean vector norms (i = 1, 2).
This equation generalizes the invariance of the product of weights as shown
in Figure 1c.

In case 5.2(iii), consider a network with two hidden units 1 and 2, each
having an exponential gain function of the form in equation 5.22 with
potentially distinct parameter values as indicated by subscripts 1 and 2.
The response in equation 6.19 now reads

r =
2∑

i=1

(
vi Ai eαi (wi0+wT

i x) + vi Ci

)
. (6.27)

To maintain the same input-output relation for all input x, the new param-
eters (with tilde) should be related to the original parameters by

ṽ1C1 + ṽ2C2 = v1C1 + v2C2, (6.28)

ṽ1eα1w̃10 = v1eα1w10 , (6.29)

ṽ2eα2w̃20 = v2eα2w20 , (6.30)

together with w̃1 = w1 and w̃2 = w2. Note that equation 6.29 or 6.30 for
each hidden unit is the same as equation 6.3 for a single neuron, so that
the output weight vi and threshold wi0 for each unit are confounded as
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before. What is new now is that the output weights of the two hidden units
need to be coordinated by equation 6.28. One explicit construction with a
continuous index t is as follows:

ṽ1 = v1 + C2t, (6.31)

ṽ2 = v2 − C1t, (6.32)

w̃10 =w10 + α−1
1 ln

(
v1

/
(v1 + C2t)

)
, (6.33)

w̃20 =w20 + α−1
2 ln

(
v2

/
(v2 − C1t)

)
. (6.34)

These new parameters satisfy equations 6.28 to 6.30 for arbitrary t, with
t = 0 corresponding to the original parameters.

In case 5.2(iv), consider a network with two hidden units with subscripts
1 and 2, each having a power gain function of the form in equation 5.23.
The response in equation 6.19 becomes

r =
2∑

i=1

(
vi Ai

∣∣wT
i x + wi0 − Bi

∣∣αi + vi Ci

)
. (6.35)

To maintain the same the input-output relation for all input x, the new
parameters (with a tilde) should be related to the original parameters by

ṽ1C1 + ṽ2C2 = v1C1 + v2C2, (6.36)

ṽ1
∣∣w̃T

1 x + w̃10 − B1
∣∣α1 = v1

∣∣wT
1 x + w10 − B1

∣∣α1
, (6.37)

ṽ2
∣∣w̃T

2 x + w̃20 − B2
∣∣α2 = v2

∣∣wT
2 x + w20 − B2

∣∣α2
. (6.38)

Since equations 6.37 and 6.38 are equivalent to equation 6.9 for a single
neuron, the input weights and the output weights should be confounded
as before. What is new is the coordination of the input weights of the two
hidden units according to equation 6.36. One explicit construction with a
continuous parameter t is as follows:

ṽ1 = v1 + C2t, (6.39)

ṽ2 = v2 − C1t, (6.40)

w̃1 = (
v1

/
(v1 + C2t)

)1/α1 w1, (6.41)

w̃2 = (
v2

/
(v2 − C1t)

)1/α2 w2, (6.42)

w̃10 = B1 + (
v1

/
(v1 + C2t)

)1/α1 (w10 − B1) , (6.43)

w̃20 = B2 + (
v2

/
(v2 − C1t)

)1/α2 (w20 − B2) , (6.44)
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which satisfy equations 6.36 to 6.38 for any t. In particular, the new param-
eters reduce to the old ones when t = 0. It follows from equations 6.39 to
6.42 that we always have ṽi w̃

α
i = viw

α
i for each hidden unit i despite their

interaction, with wi being the norm of the weight vector wi .
As shown above, both the exponential and the power gain functions can

generate parameter confounding when multiple hidden units are involved.
The examples with two hidden units considered above can be readily gen-
eralized to networks with an arbitrary number of hidden units. The mecha-
nism of parameter confounding for multiple hidden units is that the output
weights of different units should be properly coordinated, while the pa-
rameter confounding for individual hidden units works in the same way as
before. It is also possible to generate parameter confounding with multiple
hidden units of distinct types, some having the exponential gain function,
and some having the power gain function. Since the idea is similar to the
coordination of the output weights as described above, further discussion
will be omitted.

7 Parameter Confounding Occurs when Fitting Neural Networks to
Noisy Data

At the first glance, it may seem that the problem of continuous equivalence
classes should disappear for commonly used gain functions or biological
gain functions that are not exactly power, exponential, or log functions. This
is not the case, however, as many gain functions can be well approximated
over some range of their inputs by one of these forms. If a set of training data
drives a hidden unit only into a range of its gain function over which a power
law, exponential or logarithm approximation holds, then we may de facto
replace this unit with a new unit having one of these gain functions, which
according to our theory will produce a continuum of networks functionally
identical to the original network. In this section, we show numerically
that continuous parameter confounding can occur for commonly used gain
functions when the data contain noise, which is always present in practical
applications.

7.1 Exact Continuous Parameter Confounding in a Simple Model.
Before turning to more general gain functions, first consider a simple net-
work with a gain function that is precisely a power function (see Figure 5a).
By our confounding theory, an identical input-output relationship of the
network can be defined by a continuum of parameter values. Although this
continuum includes the true model parameters, it is impossible to recover
the true parameters uniquely from any given input-output data, because
the model output is identical for other parameters as well. Therefore, we
expect that the parameter estimates obtained from data are highly variable,
yet all lying along this continuum.
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We confirmed this argument with the network in Figure 5a, where the
gain function g (u) is the threshold power function in equation 4.8, and the
parameters for this gain function were obtained by least-squares fitting to
the biological data in Figure 3b (second panel from left, α < 1). We gener-
ated a data set of input-output pairs (see Figure 5b, circles) from random
inputs by assuming that the output r obeyed Poisson probability distribu-
tion P (r |x, θ ) = f (x, θ )r exp (− f (x, θ ))/r !, where the mean is given by the
deterministic network output f (x, θ ) = vg (wx + w0), with the parameter
values θ = (w,w0, v) = (1, 0, 1). Our task was to estimate the three parame-
ters (w,w0, v) from the input-output data by least squares. We used simplex
optimization (Nelder & Mead, 1965) as implemented by Matlab fminsearch,
starting from random initial values in the following ranges: −3 ≤ w0 ≤ 3,
0.1 ≤ w, v ≤ 4. The final estimates of the parameters varied from trial to
trial, depending on the initial values (see Figure 5c). The scatter of the fi-
nal estimates followed precisely the confounding curves predicted by the
theory, as given by equations 6.13 to 6.15.

In this example, the variability of the parameter estimates arises simply
because the power gain function in equation 4.8 allows different parameter
values to account for the same input-output relationship. The algorithm
used for parameter estimation and the composition of the data set can affect
the exact distribution of the scatter, but not the existence of the parameter
confounding phenomenon itself.

7.2 Continuous Confounding in a Network with Hyperbolic Tangent
Gain. In all of the remaining examples, the gain functions are not power,
exponential, or logarithmic functions. Yet parameter confounding occurs
approximately as predicted by theory because for a given noisy data set,
the gain function may be well approximated by one of the three functions.

This section focuses on the simple network in Figure 6a, where the hid-
den unit gain is a threshold hyperbolic tangent function. The output r of
the network has Poisson probability distribution P (r | x, θ ), with the mean
given by f (x, θ ) = vg (wx), where g (u) = [tanh u]+ = max (0, tanh u) is the
gain function and θ = (w, v) = (1, 50) are the true parameter values. We first
used the network to generate a data set comprising the input-output pairs
(x1, r1) , . . . , (xN, rN), and then estimated the two parameters (w, v) from the
data set by maximizing the likelihood function L (θ ) = ∏N

k=1 P (rk | xk, θ ). Be-
sides maximum likelihood, least squares can also be used to obtain similar
final results.

Given a data set, the maximum likelihood method yielded unique pa-
rameter estimates regardless of the starting point in the optimization pro-
cedure. As shown in Figure 6d for one typical data set, the error surface
(− ln L (θ ), negative log likelihood) had a shallow valley whose minimum
(square) deviated from the true parameters (triangle). The optimization
procedure found the same minimum from various starting points (×).
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Figure 6: Continuous parameter confounding occurs when the gain is well
approximated by a power function. (a) The simple network has input weight
w, output weight v, and rectified tanh gain. (b) The mean output (solid line)
is better approximated over the smaller input range [−0.5, 0.5] by a power
function (dashed line, top) than over the larger range [−2, 2] (bottom). Circles
show a typical data set having N = 100 random inputs and the elicited Poisson
outputs. Some subthreshold data are clipped in the bottom panel. (c) Each point
corresponds to maximum likelihood estimates from a single data set like the
ones shown in b. Different random data sets yielded estimates scattered along
the equivalence curves predicted by the power law approximations in b. The
estimates for the larger input range (bottom panel) stayed closer to the truth
(triangle) than those for the smaller input range (top panel). (d) For a single data
set, maximum likelihood yielded the same estimates (square) at the minimum
of the error surface in the contour plot (negative log likelihood) regardless of
the optimization starting point (crosses). But the result differed from the true
parameter values (triangle). The zigzag line shows one optimization trajectory,
starting from the circled cross. (e) By increasing the data points in each data set
from 100 to 10,000, the estimates became closer to the truth (triangle), even for
the smaller input range.
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For different data sets, the maximum likelihood estimates were different
from one another, and different from the truth as well, but all the results
were scattered approximately along the curve predicted by the power law
confounding theory (see Figures 6c and 6e). Here each point is the maximum
likelihood estimate from a single data set (by Matlab fminsearch with random
initial values 0.1 ≤ w ≤ 4, 5 ≤ v ≤ 200). The variability along the curve is
not due to different choices of optimization starting point as in Figure 5 or
some artifact of the optimization procedure, but rather is due to random
differences in the data sets.

The confounding curves in Figures 6c and 6e are given by equation 3.6,
where parameter α was obtained by approximating the gain function by
a power function g (u) ≈ Auα , so that the mean network output became
f (x, θ ) ≈ vAxα . Over the smaller input interval [−0.5, 0.5] (see Figure 6b,
top), power law fitting to the gain function by least squares yielded the
parameters A = 0.899 and α = 0.944. Over the larger input interval [−2, 2]
(see Figure 6b, bottom), the results were A = 0.704 and α = 0.586.

Over the larger interval, the gain function can no longer be well approx-
imated by a power function (see Figure 6b, bottom), and the scattering of
the estimates was greatly reduced (see Figure 6c, bottom). Similar reduc-
tion was achieved for the smaller input interval by increasing the number
of data points (see Figure 6e), consistent with the theory that, in the limit
of infinite and noiseless data, all parameters of a network with tanh gain
function should be recovered uniquely (Fefferman, 1994).

7.3 The Same Network Can Exhibit Multiple Types of Confounding
Simultaneously. A gain function may be approximated in different ways.
The standard sigmoidal gain function, for example, can be approximated
over a limited input range by both the exponential and the power func-
tions. Because exponential and power functions imply different parameter
confounding curves, which curve will the results actually follow when the
network parameters are estimated from noisy data?

To examine this issue, consider the simple network in Figure 7a with the
standard sigmoidal gain function g (u) = (1 + e−u)−1, which can be approx-
imated over the interval [−3,−1] by the power function g (u) ≈ A(u − B)α

with A = 0.00434, B = −5.21 and α = 2.86, as well as by the exponential
function g (u) ≈ Aeαu with A = 0.641 and α = 0.864, where the parame-
ters were found by least squares. The output of the network is Poisson with
the mean f (x, θ ) = vg (wx + w0), where θ = (w,w0, v) = (1,−2, 300). Based
on the two approximations, the mean output of the network f (x, θ ) (see
Figure 7b, black line) can be approximated over the input interval [−1, 1]
also by a power function (see Figure 7b, dashed line) as well as an expo-
nential function (see Figure 7b, gray line).

We estimated the three parameters (w,w0, v) from 100 random data
sets by least squares by sequential quadratic programming (Powell, 1978)
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Figure 7: Parameter confounding for multiple forms of gain function approxi-
mations. (a) The simple network has a hidden unit with the standard sigmoidal
gain function g. (b) The mean output (black line) is well approximated by both
an exponential function (gray line) and a power function (dashed line) for inputs
in [−1, 1]. The circles show a typical data set with 100 inputs and the elicited
Poisson responses. (c) The scattering of the parameter estimates (dots) obtained
from different random data sets cannot be entirely accounted for by either the
power law theory (dashed lines) or the exponential theory (solid lines). (d) For
comparison, when the gain function was replaced by either the power law or
the exponential approximation, the new estimates followed either the power
law (dark gray dots) or the exponential theory predictions (light gray dots).

using Matlab fmincon with random initial values: 0.1 ≤ w ≤ 10, −8 ≤ w0 ≤
8, 100 ≤ v ≤ 1000. The estimates seemed to spread approximately along a
continuum in the three-dimensional parameter space (see Figure 7c), falling
between the two extreme cases where the gain function is truly either an
exponential or a power function (see Figure 7d). The power law theory
curves (dashed) are given by equations 6.13 to 6.15, and the exponential
theory curves (gray) by equation 6.3. The scattering of the estimates (black
dots, in w−v and w−w0 planes in Figure 7c) conforms better to the power
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law theory for larger values of w and better to the exponential theory for
smaller values of w. This behavior is largely consistent with whether the
exponential or the power functions approximates better.

7.4 Confounds Between Input Weights to Different Hidden Units.
The logarithm is the only gain function that permits exact confounds be-
tween the input weights from different units. Here we show that similar
confounding occurs for a power gain function that approximates a loga-
rithm (see Figure 8). The power function has a threshold and is given by
g (u) = z−1 (uz − 1) with z = 0.001 for u ≥ 1, and g (u) = 0 otherwise (see
appendix A). Assuming that the output weights (v1 = v2 = 100) are known,
we want to estimate the input weights w1 and w2 (with true values
w1 = w2 = 1) from noisy input-output data by least squares (using Mat-
lab fminsearch with random initial values 0.5 ≤ w1, w2 ≤ 2). As shown in
Figure 8c, the estimates (black dots) from 100 random datasets are scattered
along the confounding curve w1w2 = 1 (black curve), as given by equa-
tion 6.26 (see also Figure 1c), with each data set comprising 100 uniformly
distributed random inputs x1, x2 ∈ [2, 4] and the elicited Poisson outputs.
Similar results were obtained when the optimization was initialized at the
true model parameters instead of randomly (see Figure 8d).

7.5 Confounding in a Center-Surround Neural Network Model. Pa-
rameter confounding can also occur in more complex networks like the
one in Figure 9, which is inspired by a hypothetical model of an auditory
neuron. We demonstrate that due to confounding, it may not be possible to
accurately recover the parameters of this network with the kinds of stimuli
typically used in experiments, and demonstrate a bootstrapping method to
test for confounding when fitting real data.

The network in Figure 9a has a generic center-surround organization that
could exist in various brain areas, such as in the dorsal cochlear nucleus
(Hancock, Davis, & Voigt, 1997; Nelken & Young, 1994; Young & Davis,
2002). The network can be rearranged into the layered form analyzed in
this article by the addition of virtual pass-through or “ghost” units (dot-
ted circles in Figure 9a, bottom panel, see also DiMattina & Zhang, 2008).
For input x = (x1, . . . , x21)T, the response r has Poisson distribution with
mean f (x, θ ) = vEg(wT

Ex + w0E + vIg(wT
I x + w0I)), where the gain function

g (left inset) is rectified hyperbolic tangent, wE is a weight vector of nar-
row gaussian connections (center μE, spread σE and amplitude AE) of the
excitatory unit (E-unit) with the input layer, and wI specifies the broad gaus-
sian connections (center μI, spread σI and amplitude AI) of the inhibitory
unit (I-unit) with the input layer (right insets). All model parameters are
summarized in Table 2.

Two types of stimuli were used to generate the response data. The first
type was diffuse random stimuli (see Figure 9b, top) where each input was
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Figure 8: Confounding in a network with power gain functions that resem-
ble a logarithm. (a) In this neural network, the output weights (v1 and v2) are
known, and we want to estimate the two input weights w1 and w2 from input-
output data with Poisson noise. (b) The gain function g for both hidden units is
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one data set. (d) Same as c, but with the minimization procedure always initial-
ized from the truth (triangle) rather than from a random point, showing again
that the choice of the starting point had no effect on the existence of parameter
confounding.

drawn randomly with uniform distribution from 0 to a maximum value,
which itself was selected randomly from [0, 1] for each stimulus. The inputs
xi were always restricted to the range [0, 1], which may be interpreted as the
range of responses of sensory transducers. The second type was spot stimuli
(see Figure 9b, bottom), each of which was three receptors wide, located
at 19 possible center locations (2, . . . , 20), and had five possible amplitudes
(0.2, 0.4, . . . , 1).
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Table 2: Parameters for the Center-Surround Network in Figure 9a.

Parameter Symbol Description Value Bounds

θ1 vE E-unit saturation 300 [75, 1200]
θ2 vI I-unit strength –2.5 [–8, –0.5]
θ3 w0E E-unit bias 0 [–2, 2]
θ4 AE E-unit weight amplitude 1.4 [0.5, 4]
θ5 μE E-unit weight center 11 [9, 13]
θ6 σE E-unit weight spread 1 [0.5, 1.5]
θ7 w0I I-unit bias –0.2 [–2, 2]
θ8 AI I-unit weight amplitude 0.2 [0, 0.5]
θ9 μI I-unit weight center 11 [9, 13]
θ10 σI I-unit weight spread 5 [3, 10]

Note: The assumed true values of the underlying model and the
search bounds used by the optimization procedure are given in the
last two columns.

Random stimuli drive the I-unit (inhibitory) better than the E-unit (ex-
citatory) because the I-unit weight distribution is wider. In contrast, the
localized spot stimuli drive the E-unit better than the I-unit. Consistent
with these observations, the E-unit gain function is well approximated by

Figure 9: Continuous parameter confounding in a more complex neural net-
work. (a) Top panel: The center-surround network has an excitatory unit (E)
with narrow gaussian connections to the input layer and an inhibitory hidden
unit (I) with broad gaussian connections (right inset). Both units have rectified
tanh gain (left inset), and the maximum firing rate of the E-unit is scaled by
parameter vE. See Table 2 for detail. Bottom panel: The layered neural network
is equivalent to the model at the top. (b) Examples of diffuse random inputs
(top) and localized spot inputs (bottom). (c) Parameter estimates attained from
data with random inputs only (blue dots), spot inputs only (green dots), or
a mixture of both (magenta dots). Top panels: Estimates from random input
data (blue dots) showed confounding among parameters vE, vI, and AE, as pre-
dicted by theory (black curves). Bottom panels: Similarly, estimates from spot
input data (green dots) showed confounding among parameters vI, AI, and w0I,
as predicted by theory (black curves). Combining both spot and random in-
puts yielded estimates (magenta dots) lying closer to the truth (red triangle).
(d) Predicting the network responses across all types of stimuli requires knowing
the true parameters (red triangles). Two left panels: Diverse parameter values
obtained from the random data, as indicated by the blue circle or square in panel
c (top) for the smallest or largest values of vE, can account for the responses to
random inputs, but not to spot inputs. Two right panels: Parameters obtained
from the spot data, as indicated by the green circle or square in panel c (bottom)
for the smallest or largest values of AI, can account for the responses to spot
inputs but not to random inputs.
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a power function Auα (α = 0.941, A = 0.896) over the smaller response
range elicited by the random stimuli, but less well approximated by the
best-fitting power function (α = 0.555, A = 0.699) over the larger response
range elicited by the spot stimuli (see Figure 10a, left). Conversely, the I-unit
gain is better approximated by a power function (α = 0.964, A = 0.926) for
the spot stimuli than by a power function (α = 0.760, A = 0.761) for the
random stimuli (see Figure 10a, right).

The power law approximations allowed us to predict the parameter
confounding observed when the network parameters were recovered from
the stimulus-response data. A set of 300 random stimuli and their associ-
ated Poisson responses was generated, and 100 bootstrapped training sets
were created by randomly drawing 300 stimuli with replacement from the
original set. For each bootstrapped training set, an estimate of the model pa-
rameters was obtained by least-squares optimization (Matlab fmincon, with
search ranges for each parameter given in Table 2). As shown in Figure 9c
(top), the estimates for the E-unit parameters (blue dots) attained from these
bootstrapped data sets were scattered along the confounding curves (black
lines) as predicted by the power law theory. Similarly, as shown in Figure 9c
(bottom), estimates from the spot stimuli (100 bootstrapped data sets drawn
from an original set of 300 stimuli selected randomly from 95 possible spot
stimuli) for the I-unit parameters (green dots) also were scattered along
predicted confounding curves (black lines).

From these results, one would predict that continuous confounding can
be avoided by using a stimulus set that contains both spot and random stim-
uli, since with this combined stimulus set, the power law approximation

Figure 10: Additional results for the center-surround network in Figure 9.
(a) The spot inputs (green circles) drove the E-unit over a wider dynamic range
of its output (black curve) than the random inputs (blue circles). The opposite
was true for the I-unit. A power law approximated better over a smaller range
than a wider range (dashed lines with the same colors as the data). (b) Networks
with diverse parameter values as indicated by the blue and green squares and
circles in Figure 9c responded differently to spot stimuli presented at the re-
ceptive field center with varying amplitude. Parameters obtained from the spot
data yielded responses (green circles and squares) closer to the true model (red
triangles) than that obtained from the random data (blue circles and squares).
Noise was excluded. (c) The correlation coefficient matrices of the estimates
may help detect confounded parameters. In the two left-most panels, all pairs
of parameters that were continuously confounded (see Figure 9c) exhibited high
correlations. Conversely, high correlations such as those in the right-most panel
do not necessarily mean confounding. (d). Box plot of all ten parameters esti-
mated from three data sets. All parameters were accurately recovered from the
combined data set with both random and spot inputs, but not from either one
type of inputs alone.
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will not be valid for either unit. To verify this, we generated 100 boot-
strapped data sets of 300 stimuli taken from a set of 205 random stimuli and
95 spot stimuli and confirmed that the final parameter estimates attained
with these data sets (see Figure 9c, magenta dots: ‘Both’) indeed had little
spread and the true model parameters (red triangles) were accurately re-
covered. The estimation errors for all three bootstrapped training sets are
summarized in Figure 10d, and we see that only this combined training set
allowed accurate recovery of all parameters.

The bootstrapping test used here is a practical way to determine if there
is continuous confounding when one fits a neural network to real data.
Since confounded parameters tend to have correlated estimates, one possi-
ble method to identify potential sets of confounded parameters is to look
for correlations between different bootstrapped estimates by computing a
correlation matrix as shown in Figure 10c. This method most likely will
detect parameter confounding when it exists, but it is also subject to false
alarm because correlation may arise also from statistical regularities in the
stimuli and does not always imply parameter confounding.

When a neural network model exhibits continuous parameter confound-
ing, the disparate parameter estimates attained by training with different
data sets can make drastically different predictions of the model’s responses
to stimuli not in the training set. For example, we used three sets of param-
eter values, as denoted by the circle, square, and triangle in Figure 9c, to
predict responses to various stimuli (see Figure 9d). Only the model with
the correct parameters made reliable predictions across all types of stimuli
(also see Figure 10b). Thus, the existence of continuous equivalence classes
is relevant for recovering the parameters of a model, as well as for making
accurate predictions using the estimated model.

8 Discussion

We have introduced a biologically motivated mathematical method that
allows one to determine when a neural network can be gradually modi-
fied while keeping the input-output relationship unchanged. Applying this
method to a standard model of a three-layer neural network (Rumelhart
et al., 1986) with convergent and nondegenerate weights, we show that this
is possible only when the hidden unit gain functions are given by power,
exponential, and logarithmic functions, possibly with zero sub-threshold
regions (see Table 1 and Figure 3). These three gain function forms are
mathematically related, with the exponential and logarithm being limiting
cases of power law functions (see appendix A).

Our result has direct implications for the network uniqueness problem:
whether the input-output function of a neural network uniquely deter-
mines its structure. For the three-layer networks as we have discussed
(see Figure 2), uniqueness is guaranteed as long as none of the hidden units
has gain function that belongs to the three types noted. One caveat is that
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Table 3: Gain Functions Required for Additive and Multiplicative Computa-
tions.

Additive Inputs Multiplicative Inputs

Additive Equation: g (x + y) = g (x) + g (y) Equation: g (xy) = g (x) + g (y)
outputs Linear solution: g (u) = Au Logarithmic solution: g (u) = Aln |u|

Multiplicative Equation: g (x + y) = g (x) g (y) Equation: g (xy) = g (x) g (y)
outputs Exponential solution: g (u) = eαu Power solution: g (u) = |u|α

Notes: Each of the four types of gain functions is uniquely required by one of the four
computational tasks of transforming additive or multiplicative inputs into additive or
multiplicative outputs (see appendix B). The four types coincide with those in Table 1.

because the modification of parameters has been assumed to be continuous
in this article, our result does not automatically rule out the possibility of
functionally equivalent networks with distinct discrete parameter sets that
cannot be linked by a continuous equivalence class of networks. We have
focused on the continuous case because it corresponds to biological learning
processes that tend to be gradual and incremental. It will be of interest for
future research to determine if the solutions obtained using our continuous
perturbation method exhaust all of the mathematical possibilities. Our the-
ory does not contradict existing theoretical results about network unique-
ness (Albertini et al., 1993; Chen et al., 1993; Fefferman, 1994; Kurkova &
Kainen, 1994; Sussman, 1992) because these results assume gain functions
that are different from the solutions obtained in this article.

Previous studies have suggested that many biological neurons have gain
functions that can be well described by power and exponential functions
(Anderson et al., 2000; Ermentrout, 1998; Gabbiani et al., 2002; Smith et
al., 2002; Stafstrom et al., 1984). Here gain function is loosely interpreted
as the dependence of firing rate on input current or membrane poten-
tial as in Figure 3b. Furthermore, many computational models of sensory
processing have made use of power law, exponential, or logarithmic trans-
formations of sensory variables (Adelson & Bergen, 1985; Colburn, 1973;
Heeger, 1992; Pollen & Ronner, 1983). The usefulness of these transfor-
mations is also underscored by the fact they are the only possibilities for
transformations between additive or multiplicative inputs or outputs (see
Table 3; see appendix B for derivations). Previous theoretical work has
shown that the power law function is unique in transforming multiplica-
tive inputs into multiplicative outputs (Hansel & Van Vreeswijk, 2002; Miller
& Troyer, 2002). This table extends these observations by including trans-
formations involving both additive and multiplicative inputs and outputs.
Another interesting observation is that the classification of gain functions in
Table 3 coincides with that in Table 1. The gain functions in the two tables can
actually be made identical with proper scaling and shifting (see appendix B).

Our results also imply that different neural networks with disparate val-
ues of weight and threshold parameters can perform identical input-output
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transformations. This possibility is biologically plausible, as previous stud-
ies of more biophysically realistic neural network models have suggested
that networks having disparate parameter values can exhibit functionally
nearly identical behavior (Achard & De Schutter, 2006; Marder & Goaillard,
2006; Olypher & Calabrese, 2007; Prinz, Bucher, & Marder, 2004; Weaver &
Wearne, 2008). It may be actually beneficial for a neuronal network to be
able to maintain functional homeostasis by modifying suitable synaptic
weights or threshold parameters in order to offset or compensate for un-
expected changes due to injury or nonstationarity in different parameters
elsewhere in the network. Our analysis suggests that how different param-
eters may compensate should depend on the input-output relation or the
gain function of individual neurons. For power gain function, for instance,
the condition for preserving functionality such as vwα = const (see equa-
tion 3.6) implies that a small increment �w of the input weight should be
related to the increment �v of the output weight by

�v/v = −α�w/w (8.1)

or � ln v = −α� ln w, where � indicates a small change. Such quantitative
relationships might help constrain further studies of network functional
homeostasis.

The basic confounding equation, 2.2, applies to arbitrary feedforward
networks because it assumes only the differentiability of a generic input-
output relation. We have focused on the three-layer perceptrons (Rumel-
hart et al., 1986) because they allow complete analytical solutions to
equation 2.2 under the assumption of convergent and nondegenerate
weight matrices, as shown in this article. The three-layer networks are
useful as tools of nonlinear regression in a wide variety of applications,
including modeling the responses of nonlinear sensory neurons (Lau et al.,
2002; Lehky et al., 1992; Prenger et al., 2004; Wu et al., 2006; Zipser & Ander-
sen, 1988). These networks may also be implemented by the dendrites of
a single neuron instead of a network of neurons (Poirazi, Brannon, & Mel,
2003). Although three-layer neural networks also enjoy universal function
approximation capability (Cybenko, 1989; Funahashi, 1989; Hornik, Stinch-
combe, & White, 1989), a sufficiently large number of hidden units or a
divergent connection pattern may be required. In a divergent three-layer
network, the gain functions identified in Table 1 can still induce param-
eter confounding, but no longer exhaust all possibilities of confounding
mechanisms (see Figure 4a).

It is of interest to see how our methods generalize to more complex neural
models having more layers, as well as models having recurrent connections
and temporal dynamics. We emphasize that the parameter confounding
mechanisms identified in this article remain valid as a subnetwork embed-
ded in a larger and more complex network. If a subnetwork contains con-
founded parameters, so does the whole network. More complex networks,
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however, may allow additional parameter confounding mechanisms that
have no counterpart in three-layer networks (see Figure 4b).

The sigmoid and hyperbolic tangent gain functions typically used in
multilayer perceptrons do not in theory permit continuous equivalence
classes (Albertini et al., 1993; Chen et al., 1993; Fefferman, 1994; Kurkova &
Kainen, 1994; Sussman, 1992), but these functions can be well approxi-
mated over restricted regions of their inputs by power law or exponential
functions. We have shown that for training sets with stimuli that drive the
hidden units only into ranges where the approximation holds, one finds a
flat ridge in the error surface along the continuum of networks that are func-
tionally equivalent to the true network (see Figure 6d), as predicted by the
approximating function. It can be impossible to use these restricted training
sets to uniquely recover the true model parameters, which are needed for
correctly predicting the responses across all types of stimuli (see Figure 9).
As a related topic, it is shown in appendix C that continuous parameter
confounding, which can cause a ridge in the error surface, is related to the
degeneracy of the Fisher information matrix (Wei, Zhang, Cousseau, Ozeki,
& Amari, 2008).

For practical applications to neural network training, our results suggest
that it may be useful to monitor the activities of the hidden units in order to
identify parameter variability due to continuous parameter confounding,
which can be predicted based on approximations of the used range of a gain
function by the three types of functions discussed in this article. One may
reduce parameter confounding by increasing either the amount of data or
the dynamic range of the net inputs to the gain functions (see Figure 6).
To improve neural network modeling of neurophysiological stimulus-
response data, one should try to include stimuli that can drive hidden units
activities over a wide dynamic range. One possibility for choosing proper
stimuli is to use optimal experimental design methods (Atkinson & Donev,
1992) to adaptively generate stimuli that extract the most information about
model parameters (Cohn, 1996; MacKay, 1992; Paninski, 2005). However,
for some neural network structures, it is possible that no sensory stimuli
can effectively drive one or more hidden units over a wide enough dy-
namic range, thus making unique identification of network structure from
input-output measurements intractable. In such cases, this inherent limi-
tation can be overcome only by new experimental methodology that can
directly collect information from neurons in the hidden layers or directly
measure network connectivity.

Appendix A: Exponential and Logarithm as the Limits of Power
Function

An exponential gain function can be approximated by a power function
because

(1 + u/z)z → eu (A.1)
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in the limit of large z as z → ∞, whereas a logarithmic gain function can be
approximated by a power function because

(uz − 1)/z → ln u (A.2)

in the limit of small z as z → 0. When a power function closely approxi-
mates the logarithm, the logarithmic confounding as in Figure 1c occurs
approximately (see Figure 8).

Now we examine how the three main types of gain functions are related
in the light of the limits. We start with the power gain function solution in
equation 5.23,

g (u) = −c/q + A|a + bu|−q/b , (A.3)

which has been derived under the assumption that q �= 0 and b �= 0. Since
the exponential solution in equation 5.22 assumes b = 0, we take the limit
of g (u) in equation A.3 as b → 0 and indeed obtain the same exponential
solution as in equation 5.22:

lim
b→0

g (u) = lim
b→0

(−c/q + A|a + bu|−q/b) = −c/q + Ae−(q/a )u. (A.4)

This is because

|a + bu|−q/b = |a |−q/b (|1 + u/z|z)−q/a → 1 (eu)−q/a = e−(q/a )u, (A.5)

according to equation A.1, as z → ∞ or b → 0, assuming z = a/b and
q/b > 0.

The logarithmic solution in equation 5.21 assumes q = 0. Simply taking
the limit of equation A.3 as q → 0 yields the indefinite result limq→0g (u) =
∞. To obtain a proper limit compatible with solution 5.21, we may put
c = −q A0 + c0 and A = c0/q in equation A.3, where A0 and c0 are new
constants corresponding to A and c in equation 5.21. Then we have

g (u) = A0 + (c0/q )
((|a + bu|−1/b)q − 1

)
→ A0 + c0 ln |a + bu|−1/b

(A.6)

as q → 0, where the limit follows from equation A.2 with z = q . Taken
together, now we have

lim
q→0

g (u) = lim
q→0

(−c/q + A|a + bu|−q/b) = A0 − (c0/b) ln |a + bu| .

(A.7)
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Thus, the logarithmic solution can be taken formally as a limit of the
power solution only after suitable adjustment of parameters, as shown
above.

Appendix B: Additive and Multiplicative Inputs and Outputs

Given a gain function g and two inputs x and y, the outputs are g (x) and
g (y), respectively. When the sum x + y or the product xy is presented as
the new input, the new output may be equal to the sum g (x) + g (y) or the
product g (x) g (y) of the old outputs, depending on the exact form of the
gain function. Below we consider all four possibilities in detail by solving
functional equations (Aczél & Dhombres, 1989). We assume differential gain
functions and ignore the trivial solution g (x) = 0.

Case B(i): Additive inputs are mapped to additive outputs. The gain function
is characterized by the equation

g (x + y) = g (x) + g (y) . (B.1)

To solve this functional equation, first take the partial derivative ∂/∂y
to obtain g′ (x + y) = g′ (y). Setting y = 0 gives g′ (x) = g′ (0) ≡ A, so that
g (x) = Ax + C . Substitution back into equation B.1 gives C = 0. Thus,

g (x) = Ax. (B.2)

Case B(ii): Multiplicative inputs are mapped to additive outputs. The gain
function is characterized by

g (xy) = g (x) + g (y) . (B.3)

Take the partial derivative ∂/∂y, and then set y = 1 to obtain xg′ (x) =
g′ (1) ≡ A. Thus,

g (x) = Aln |x| . (B.4)

Case B(iii): Additive inputs are mapped to multiplicative outputs. The gain
function is characterized by

g (x + y) = g (x) g (y) . (B.5)

Take the partial derivative ∂/∂y and then set y = 0 to obtain g′ (x) = g (x) α

with α = g′ (0). The general solution is of the form

g (x) = eαx. (B.6)
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Case B(iv): Multiplicative inputs are mapped to multiplicative outputs. The
gain function is characterized by

g (xy) = g (x) g (y) . (B.7)

Take the partial derivative ∂/∂y and then set y = 1 to obtain xg′ (x) =
g (x) g′ (1), whose general solution has the form g (x) = c |x|α with α = g′ (1).
Substituting this solution back to equation B.7 and then setting x = y = 1,
we obtain c = c2, which means c = 1 or 0. Thus, the general solution to
equation B.7 is

g (x) = |x|α . (B.8)

The argument for the four cases can be readily generalized to allow addi-
tional scaling and shifting for both the inputs and outputs. The generalized
solutions can be made identical to the gain functions shown in Table 1. For
example, we can replace equation B.7 by the equation Ag (xy) = g (x) g (y)
to obtain the solution g (x) = A|x|α instead of equation B.8. More generally,

A(g (xy + B) − C) = (g (x + B) − C) (g (y + B) − C) (B.9)

yields the solution

g (x) = A|x − B|α + C, (B.10)

which is of the same form as that in Table 1. The other three cases can be
generalized similarly.

Appendix C: A Relation Between Continuous Parameter Confounding
and Fisher Information Degeneracy

In this appendix we show that a network with either Poisson or gaussian
noise permits continuous parameter confounding only if its Fisher infor-
mation matrix is degenerate for all inputs. Since a necessary and sufficient
condition for continuous parameter confounding is equation 2.2 or 2.4, we
need only to show that equation 2.4 implies Fisher information degener-
acy. Given the mean output f (x, θ ) for input x and network parameter set
θ = (θ1, . . . , θk), we rewrite equation 2.4 as

qT∇ f = 0, (C.1)

where both coefficient set q = (q1, . . . , qk)T and gradient ∇ f = (∂ f /∂θ1,

. . . , ∂ f /∂θk)T are taken as column vectors, with T indicating transpose.
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When Poisson or gaussian noise is added to the mean output, the Fisher
information matrix with respect to the parameter set is

J = 1
V

∇ f∇ f T, (C.2)

where the variance V = f for Poisson noise, and V = σ 2 for gaussian noise
(Seung & Sompolinsky, 1993).

Now suppose equation C.1 holds for all inputs x for some fixed nonzero
vector q that is independent of x; then we have a vanishing quadratic form:

qTJq = 1
V

(
qT∇ f

) (∇ f Tq
) = 1

V

(
qT∇ f

)2 = 0, (C.3)

where the first step follows from equation C.2 and the last step follows from
equation C.1. Since q is nonzero, the vanishing quadratic form qTJq = 0
means that the Fisher information matrix J must be degenerate for all inputs,
or

rank J < dim θ = k. (C.4)

This proves the statement at the beginning of this appendix. The converse
statement is not necessarily true. Although a degenerate Fisher information
matrix J implies qTJq = 0 for some vector q, which in turn implies equation
C.1, there is no guarantee that q is independent of input x, as required in
confounding equation, C.1.
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