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The stimulus-response relationship of many sensory neurons is non-
linear, but fully quantifying this relationship by a complex nonlinear
model may require too much data to be experimentally tractable. Here we
present a theoretical study of a general two-stage computational method
that may help to significantly reduce the number of stimuli needed to ob-
tain an accurate mathematical description of nonlinear neural responses.
Our method of active data collection first adaptively generates stimuli
that are optimal for estimating the parameters of competing nonlinear
models and then uses these estimates to generate stimuli online that are
optimal for discriminating these models. We applied our method to sim-
ple hierarchical circuit models, including nonlinear networks built on the
spatiotemporal or spectral-temporal receptive fields, and confirmed that
collecting data using our two-stage adaptive algorithm was far more effec-
tive for estimating and comparing competing nonlinear sensory process-
ing models than standard nonadaptive methods using random stimuli.

1 Introduction

Linear system identification methods are widely used to quantify the re-
lationship between stimuli and neural responses in systems-level sensory
neurophysiology (Wu, David, & Gallant, 2006), with the canonical example
being the estimation of a linear receptive field from stimulus ensembles
like random noise (Marmarelis & Marmarelis, 1978; Jones & Palmer, 1987;
DiCarlo, Johnson, & Hsiao, 1998; Yu & Young, 2000) or natural stimuli
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(Theunissen, Sen, & Doupe, 2000; David, Vinje, & Gallant, 2004). Since
many sensory neurons have important nonlinear properties, various meth-
ods have been used to model nonlinear neurons, including recent examples
such as quadratic analyses (Yu and Young, 2000; Rust, Schwartz, Movshon,
& Simoncelli, 2005; Bandyopadhyay, Reiss, & Young, 2007; Chen, Han, Poo,
& Dan, 2007), multilinear models (Ahrens, Linden, & Sahani, 2008; Ahrens,
Paninski, & Sahani, 2008), and neural network models (Lau, Stanley, &
Dan, 2002; Prenger, Wu, David, & Gallant, 2004; Cadieu et al., 2007). The
vast majority of nonlinear modeling techniques are applied post hoc in of-
fline analyses, and as a consequence, reliable parameter estimation often
requires a large amount of data, and it is also impossible to directly test
model predictions in real time during the course of an experiment.

In this study, we consider an online active learning approach to the prob-
lem of identifying nonlinear neurons, where stimuli are presented to sen-
sory neurons in an adaptive manner, evolving with the neuron’s response
history so that the stimulus presented at each step is the most likely to
be useful for recovering the network parameters given our current state of
knowledge. This general approach has various names in the literature, such
as optimal experimental design (Paninski, 2005; Benda, Gollisch, Machens,
& Herz, 2007; Atkinson & Donev, 1992; Chaloner & Verdinelli, 1995), adap-
tive design optimization (Cavagnaro, Myung, Pitt, & Kujala, 2010), active
learning (Cohn, Ghahramani, & Jordan, 1996), and query-based learning
(Freund, Seung, Shamir, & Tishby, 1997).

Besides applications in machine learning (MacKay, 1992; Cohn et al.,
1996; Freund et al., 1997; Sugiyama & Rubens, 2008) and psychophysics
(Watson & Pelli, 1983; Kujala & Lukka, 2006), a recent study (Lewi, Butera,
& Paninski, 2009; Lewi, Schneider, Woolley, & Paninski, 2011), has demon-
strated an efficient information-theoretic algorithm for estimating gener-
alized linear models (McCullagh & Nelder, 1989), also referred to as a
linear-nonlinear Poisson (LNP) model, which has been used in many sen-
sory neuroscience studies (Simoncelli, Paninski, Pillow, & Schwartz, 2004).
The LNP models incorporate several useful biological features like spik-
ing and spike history adaptation, and with gaussian inputs enjoy consis-
tent estimation and log-convex likelihood functions so that they may be
estimated without local minima (Paninski, 2004). Since the LNP model re-
sembles a two-layer perceptron model, which has inherent computational
limitations (Minsky & Papert, 1988), to model nonlinear sensory neurons in
higher brain areas, a hierarchical network of LNP models would be needed
(Schinkel-Bielefeld, David, Shamma, & Butts, 2010), but for such a network,
the likelihood function is no longer guaranteed to always have a unique
optimum.

In this letter, we focus on feedforward hierarchical neural networks or
multilayer perceptrons (Rumelhart, Hinton, & McClelland, 1986), which
are universal function approximators (Hornik, Stinchcombe, & White,
1989; Cybenko, 1989) with widespread applications in various disciplines.
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Although these networks models are highly simplified, they are still
biologically relevant as sensory processing models because of their resem-
blance to the general neural mechanisms, where complex response prop-
erties are built up from simpler responses at lower levels. In fact, these
models have been used in numerous models of nonlinear sensory neurons
(Zipser & Andersen, 1988; Lehky, Sejnowski, & Desimone, 1992; Riesenhu-
ber & Poggio, 1999; Lau et al., 2002; Prenger et al., 2004; Cadieu et al., 2007;
Hinton, 2010). Since optimal design methods for such models have never
been applied to any online neurophysiological experiment, developing de-
sign algorithms based on these simplified models may have immediate
benefit and might also help gain knowledge for handling more compli-
cated models in the future. Because in practice neuroscientists often enter-
tain several alternative hypotheses about the function of nonlinear sensory
neurons, we will introduce a general two-stage procedure for estimating
and comparing multiple competing models based on optimal experimental
design in a Bayesian framework. In the model networks we analyze, we
observe only the noisy activity of a neuron at the top, assuming that the
activities of the neurons at the lower levels (hidden units) are unknown,
not unlike the situation in most neurophysiological experiments. Since we
know the true parameters of the model network, we will examine how
accurately the model parameters are recovered from the stimulus-response
data, as well as how accurately our method chooses the correct model from
a set of candidate models.

2 Estimation of Nonlinear Network Models

In this section we use biologically inspired neural network models to show
how we design stimuli to efficiently estimate the parameters of a single
given model. The methods developed here are necessary for our consider-
ation of comparison of multiple models in later sections.

2.1 Optimal Design Reduces Parameter Confounding: Center-
Surround Network. We use the simple center-surround network model
in Figure 1a to illustrate stimulus generation by optimal experimental de-
sign and demonstrate that this method permits accurate parameter recovery
in neural networks, which are harder to identify using random noise stim-
uli due to the problem of continuous parameter confounding (DiMattina
& Zhang, 2010). This generic circuit, with an excitatory neuron (E) and an
inhibitory neuron (I), is inspired by the type II neuron with surround inhi-
bition in the dorsal cochlear nucleus (Young & Davis, 2002). The response
r of this network has Poisson distribution, and the mean response to input
X = (X1, ..., X21) is given by the rate model

f(X, 0) = VEZE (wOE + Wg - X+ vIgI (wQI + Wy - X)) s (21)



Active Data Collection for Nonlinear Neural Models 2245

a b C Optimal design Random
Response 1 ~nnn

Gain function g r 300, Mean response
100 ..
—7[’ iq— Wog

0 ~es _

--- Exponential fit | *
« Random Y

« Optimal design : »
2

b vi=0 —_— 1 c~moasachar
. . @ LI =
Garn‘functron P41 g 2 5
2 L — 1
=/~ Woi 2 e 12
e < 100 — 1
o —_— —m e 14
o MY T — U —
—_— . - 6
————— ~ompnaraa g7
i 18
pt s 19
5 g . 5 a3 r— 20
Input to E-unit . .

d — . omemen gy
e —— Random e T 8
10* — Random (matched m&v) — o — ::
gng 8 « Random — Optimal design — NN ocamesem :Z
@ 8 «  Optimal design 10° T TR W
Tar——r~n e A M 88
3 4f | A Truth s — M r— g
= . £ 102 - N — %
= 5 — Exponential theory $ — 5i
uw & )
— S 10" M 0
© 0 = —/ 1 n 94
% @« e T — 95
2 0 %
i 19 — M e gy
? L Ofn - aemmnnea g
4 . L L L , 0! 1 e r 9

—/n—e 1o e
0 10 20 30 40 10' 10° 10° 100

Estimate of E-unit max rate v Number of stimuli 1 1 21 1 1 21

Input

Figure 1: Optimally designed stimuli allow better estimation of neural network
parameters than random stimuli. (a) The circuit implements center-surround in-
hibition via an interneuron (I) that inhibits the output (E) unit. Insets show the
gain functions (left) and the input weights (right). (b) Optimally designed stim-
uli (left column in panel c) elicit a wide range of responses (blue dots). Random
stimuli (right column in panel c) drive the responses (green dots) over a nar-
row region of the gain function (black curve), which is well approximated by
an exponential (red dashed line); the response range increases after removing
I-unit inhibition (black crosses). (c) Left column: Optimally designed stimulus
sequence obtained by maximizing the D-optimal utility function (see Table 1).
Right column: Random stimuli with independent amplitudes in the bins and
random maximum amplitude between 0 and 1. (d) Parameter estimates (vg, wog)
attained from optimally designed stimuli (green dots) are clustered around the
truth (red triangle), whereas the estimates from the random stimuli (blue dots)
lie widely scattered along the curve given by equation 2.2 as predicted by the
exponential confounding theory. See text for detail. Each dot represents the
estimates from one experiment with 100 stimuli, and the experiment was re-
peated 300 times by Monte Carlo simulations. (e) Optimally designed stimuli
lead to better estimates than the random stimuli, while the errors of all meth-
ods decrease with the number of stimuli. Constraining the random stimuli
to have the same mean and variance as the optimally designed stimuli can
improve performance, although they are still not as good as the optimally de-
signed stimuli. Each dot represents the median square error of 50 Monte Carlo
experiments.
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Table 1: Summary of Parameters for Model in Figure 1.

Parameter Description Value
VE E-unit maximum rate 3
WOE E-unit bias -1.5
Ag E-unit weight amplitude 2.5
ILE E-unit weight center 11
OR E-unit weight spread 1
vp I-unit output weight -5
wor I-unit bias -2
A [-unit weight amplitude 0.6
M I-unit weight center 11
o1 I-unit weight spread 5

where the gain functions are sigmoidal: gg(u) = 100/(1 +e~*) and gr(u) =
1/(1+e7*), and the weights from the input layer are gaussian: wg =
Ape®=17/20% and wy = Ae®/2%" withn = (1, ..., 21). The model has 10
free parameters 6 = (vg, wog, Ag. LE, OF, U1, Wor, A1, i1, o1), whose meanings
and true values are given in Table 1 (see also Figure 1a).

These parameters can be estimated by fitting the model to any given
stimulus-response data. Poorly chosen stimulus sets such as the random
stimuli in Figure 1c yield poor parameter estimation, as shown by the wide
scattering of the maximum-likelihood estimates of the output weight vg
and the bias wog in repeated simulations (see Figure 1d). This scattering
is caused by the fact that only a very narrow range of the gain function
is used, such that the effective gain function is approximately exponential.
This leads to the confounding phenomenon: different combinations of pa-
rameters can lead to neural networks with almost identical input-output
functionality (DiMattina & Zhang, 2010). More specifically, the strong in-
hibition of the I-unit (see Figures 1a and 1b) allows the random stimuli
to elicit only small responses from the E-unit. When restricted to low ac-
tivation, the E-unit gain function can be approximated by an exponen-
tial: gg(u) ~ Ae*" (see Figure 1b), so that we can rewrite equation 2.1 as
f = vgge(wog + 2) & Avge®"Fe*?. Thus, we can choose different values of
parameters vg and wog but still obtain nearly identical overall input-output
transformation of the network, provided that parameters vg and wg satisfy
the equation

vpe“"™® = const. (2.2)

In other words, the theory predicts that there will be confounds between the
bias (wor) and output weight (vg) of a hidden unit if the stimuli probe the
gain functions only within the range where it is approximately exponential.
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Continuous parameter confounding, where changing parameters con-
tinuously leave the outputs of a neural network unaltered, is a common
phenomenon that takes many different forms (DiMattina & Zhang, 2010).
The scattering due to the confounding should be reduced automatically
by optimal experimental design because it generates stimuli that yield the
most accurate parameter estimation. The optimally designed stimuli in Fig-
ure lc are generated one by one by optimizing a utility function, and they
lead to estimates showing very little spread around the truth in repeated
experiments (see Figure 1d). A small number of optimally designed stimuli
can be equally effective for parameter estimation as a much larger number
of random stimuli (see Figure 1e). Note how the optimally designed stimuli
contain a great deal of complex correlated structure (see Figure 1c) and how
consecutive stimuli tend to be different from one another. Although for a
given network, one may use intuitive or heuristic ideas to look for effi-
cient stimuli, the optimal design method provides a principled approach to
find the most efficient stimulus set for parameter estimation, automatically
taking into account network architecture and response history.

Compared with the random stimuli where the amplitudes of different
bins are completely uncorrelated, the optimally designed stimuli appear
to have more complex and correlated structures, which are responsible for
their effectiveness (see Figure 1c). As is clear from Figure 1b, the optimally
designed stimuli do not always drive the network to the highest response.
Instead, the outputs appear to span the entire range, from very small to
very large. So an optimally designed stimulus is generally different from
an optimal stimulus, which commonly refers to the stimulus that elicits
the maximum response (DiMattina & Zhang, 2008). We have also used
random stimuli whose amplitudes are uncorrelated but have segmented
uniform distribution so as to match the mean (0.4357) and variance (0.2301)
of the optimally designed stimuli. The performance was improved but still
below that of the optimally designed stimuli. Here the segmented uniform
distribution had a constant probability within intervals [0, 2] and [b, 1], but
0 probability between a and b (¢ = 0.0360 and b = 0.9727).

The optimally designed stimuli in Figure 1 were generated by maximiz-
ing an expected utility Ur(i)l (x) quantifying how useful we expect stimulus
x to be for estimating the parameter set # (Chaloner & Verdinelli, 1995).
The superscript E (for estimation phase) is used to distinguish from the
comparison phase in later sections. At iteration n+1 (1 =0,1,2,...), the
stimulus is given by

Xy 41 = arg max Uﬁ)l(x), (2.3)
with
u® x) = / uB(x | 0)p,(6)d0, (2.4)
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Table 2: Some Utility Functions for Model Estimation.

Design Utility u®(x | ) Interpretation

D-optimal detF, 41 (x1, ..., Xn, X, 6) Inverse volume of covariance ellipsoid

A-optimal —trace F;}_l (X1, .-+, Xn, X, #) Sum of minimum variance of parameters

Mutual Dk [p(r | x,0), p(r | x)] Information between data and parameters
information

Square loss —(|16 —E[0 | x, ]| %), Direct squared error

where u{”(x | #) denotes the conditional expected utility, which quantifies
how useful xis for estimating 6 given the n previous observations {(x;, )},
and true (unknown) parameter value 6. Here p,(#) is the posterior distri-
bution of parameters, which depend implicitly on the data {(x;, 7;)}\_;. The
initial distribution py(#) is the Bayesian prior.

There is a wide variety of choices for u,(qE) (x | 0) in the literature (Atkinson
& Donev, 1992; Chaloner & Verdinelli, 1995), some of which are listed
in Table 2. For this example we employ D-optimal design, which min-
imizes the expected volume of the covariance ellipsoid by maximizing
the expected value of the determinant of the Fisher information matrix
Foi1(x1, ..., Xy, X, 0), which is updated recursively by

1
Foi(x1,....%0, X%, 0) =F,(xq,...,%,,0)+ ;ng(x, 0)Ve f(x, o)T (2.5)

(Atkinson & Donev, 1992), starting from an identity matrix Fy = I. Here the
variance v = f(x, #) for Poisson noise and v = ¢ for gaussian noise. The
utility u,(1E) (x| 0) =detF,11(x1, ..., Xy, x, #) for D-optimal design is equiva-
lent to

u®(x | 0) = %Vof(x, 0)"F, '(x1, ..., X, 0)Vp f(x,0) (2.6)

(Atkinson & Donev, 1992). The example in Figure 1 is based on equations 2.3
to 2.6 with particle filter approximation of the posterior (see section 3.1.2
for further detail).

2.2 Three-Layer Subunit Network. In this section, we consider the net-
work in Figure 2a, where the final response is a nonlinear combination of the
outputs of two linear subunits that resemble the spatiotemporal or spectral-
temporal receptive fields (STRF). Here the nonlinearity in the system
comes from the gain functions in the network rather than from nonlinear
preprocessing (David & Gallant, 2005; Ahrens, Paninski, & Sahani, 2008).
The network performs a supralinear detection of a specific feature
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conjunction (see Figure 2b). This network contains a large number of pa-
rameters because each pixel in the STRF weight patterns is an independent
parameter. We use this example to illustrate another estimation utility func-
tion based on mutual information or entropy (see Table 2).

This network is equivalent to a three-layer perceptron (Rumelhart et al.,
1986), whose mean response to stimulus x is given by

f(x,0)=h (Z vig(Wix + wol')> : 2.7)

i=1

where we have m = 2 hidden units with the sigmoidal gain function g(u) =
(1 +e ")~ and the output unit has an exponential gain function h(u) = e*
(see Figure 2a, inset). The input weights w; and w, to the two hidden
subunits define their preferred stimuli and are based on Gabor function

wi(x, y) = Aiexp <_2L(izx — 21:%) cos (27;% + <pi> , (2.8)
where

ui(x, y) = (x — Wix) c0sO; + (Y — piy) sin;, (2.9)

vi(x, y) = —(x — pix) sin0; + (y — piy) coso;, (2.10)

with i =1 or 2, and the parameters are given in Table 3. Vector w; and w»
are made from discrete 12 x 12 sample of the Gabor patterns, then concate-
nated as column vectors, and finally normalized by ||w;|| = |[|w;|| = 4. The
parameter set @ = {v1, vo, wo1, W2, W1, Wa} contains 292 free parameters.

The representation of a posterior that evolves as new observations are
made is fundamental to the Bayesian method. The posterior density was
approximated by a particle filter for the example in Figure 1, which has
a small number of parameters, but due to the high dimensionality of the
model in Figure 2, we use an alternative approximation of the posterior as
a sum of gaussians:

K
pu(®) = Y PN (01 1. ED). @11

j=1

with means ;L,(1j ) and covariances ij ). Given a novel stimulus-response
observation, we approximate the Poisson noise by a gaussian model with
variance equal to the mean, and then recursively update the posterior den-
sity using the extended Kalman filter equations (Alspach & Sorenson, 1972;
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Haykin, 2001; Hering & Simandl, 2007). Following Paninski (2005), our
expected utility function is based on mutual information or negative differ-
ential entropy:

U0 = — f H [pua(0)] p(r | )dr
2.12)

1
~lIn (1 + —aﬁlk)(x)T):;k)a;k)(x)) ,
v

where H is the differential entropy of the posterior, aﬁ,k)(x) =V f(x, p,ff)) is
the sensitivity function (Cohn, 1996), v = f(x, [L;(qk)) for Poisson noise or v =
o for gaussian noise, and the approximation in the second step follows from
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equation 2.11 by assuming that the probability mass lies almost entirely on

the highest peak k = arg max; {a{))}. (See sections 3.2.1 and 3.2.2 for details.)

As shown in Figure 2, optimally designed stimuli that maximize equa-
tion 2.12 yield far more accurate estimates of the parameters than random
stimuli (see Figures 2d and 2e). These stimuli were chosen from a finite set
of stimuli generated using a heuristic in order to minimize computation
time (section 3.2.3).

To extend our neural network formulation to time-varying stimulus x(t),
we may describe the time-varying response r(t) as a Poisson process with
the time-varying rate given by

,0:hm,- OciT —7)d i), 2.13
Fx(t). 0) (Zlg(/o wl(O)x(t r>r+wo)> (2.13)

where the weight w;(7) is the spatiotemporal kernel that defines the time-
varying input to the ith subunit. In the special case of a single subunit
(m = 1) and linear gain functions, equation 2.13 reduces to the well-known
linear STRF model. This optimal design procedure is readily generalized
to time-varying stimuli x(t) that give rise to time-varying responses r(t).
In Figures 2f and 2g, dimension 1 (horizontal axis) is given a temporal

Figure 2: Optimal design for nonlinear network with linear subunits. (a) Hier-
archical network model of a hypothetical sensory neuron that is selective for
a specific feature conjunction. Color images show the input weights (12 x 12
bins) of the two subunits. (b) The response of the network to the conjunction of
stimulus features is nonlinear, that is, far greater than the sum of the responses
to either stimulus feature alone. (c) Box plot of the angle between the true weight
vector wy (or w) and its estimate obtained using various methods as explained
in panels d-g. Here “static” corresponds to the case in panels d and e, and
“temporal” corresponds to the case in panels f and g. In all cases, optimally de-
signed stimuli yielded more accurate estimation than random stimuli. (d) Left:
Optimally designed stimuli (blue curves) that minimize the posterior entropy
perform much better than random stimuli (green curves) for any given number
of stimuli. Thick lines indicate the median and thin lines indicate the 25th and
75th percentiles of 50 Monte Carlo experiments. Entropy was computed using
the bound in expression 3.31. Right: The same data shown by the square error.
(e) Estimated input weights of models with parameter estimation accuracy in
the 99th, 75th, 50th, and 25th percentiles of the 50 Monte Carlo experiments,
showing that the optimally designed stimuli can recover the weights more ac-
curately than the random stimuli. (f) Same as in panel d but for time-varying
stimuli and responses. In each of the 25 Monte Carlo experiments, each stimu-
lus was repeated 20 times to attain a reliable estimate of the time-varying firing
rate. (g) Same as in panel e but for spatiotemporal filters.
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Table 3: Summary of Parameters for the Models in Figures 2 and 6.

Parameter Description Value

vy, U2 Subunit 1, 2 output weights 25,25

wo1, W2 Subunit 1, 2 bias -1.5,-25
W1, Wy Subunit 1, 2 input weights 12 x 12 Gabor pattern
Mxs U2x Gabor centers in x-dimension 7,4

Oy, Oy Gabor spreads in x-dimension 2,2

M1y, Koy Gabor centers in y-dimension 55

o1y, 02y Gabor spreads in y-dimension 1.8,1.8

A, A Gabor-amplitudes 1.7,1.7

T, T» Gabor period 55

01, 2 Gabor phase shifts 0,0

01,0 Gabor orientation 37/8, —37/8

Note: The weight vectors w1 and w; are described by equation 2.8.

interpretation of 20 msec time interval per bin. Here both the weight patterns
and the stimulus patterns have 12 x 12 bins each. We pad the beginning and
end of a stimulus pattern with Os and slide the weightbins across the padded
pattern to generate a sequence of elicited responses. The corresponding
sequence of static stimuli (the segment of stimulus pattern falling within
the weight bins) can be used to update the Kalman filter as before. The only
caveatis thatbecause the instantaneous firing rate is computed by observing
spike counts in a short time window, one may need to present several
repetitions of the time-varying stimulus to get an accurate estimation of
r(t). Here averaging over 20 repeated stimulus presentations was used. We
see in this case that the optimal design also performs better than random
stimuli (see Figures 2f and 2g).

To quantify the error of estimation, we computed the angle between
the true weight vector w; and its estimate W;, namely, angle = arccos(w;
W,/ |lw;l| [[W;[]). As shown in Figure 2¢, the error angles obtained from
optimally designed stimuli were always significantly better than that
obtained from random stimuli in all cases we tested (Wilcoxon rank-
sum test: p < 4 x 107" in static cases and p < 2 x 107 in spatiotemporal
cases).

We also performed another analysis in order to determine the extent to
which the estimated weight vectors w; and W; lie in the plane spanned by
the true vectors wi and wy. We computed the projection w; = (W; - uj)u; +
(W; - up)up, where u; and u; are an orthonormal basis for span(wi, wy), and
then defined an index p; = ||m;|| / ||W;]||. By definition, we have 0 < p; <
1, with p; =1 indicating that W; lies entirely in span(w;, wy) and p; =0,
indicating that W; is orthogonal to this plane. Applying this analysis to the
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numerical experiments for the static case in Figure 2, we found that the
median indices for the optimally designed stimuli (p; = 0.98, p, = 0.98)
were significantly greater than that for the random stimuli (p; = 0.90, p, =
0.93; Wilcoxon rank-sum test, p < 1 x 1077), indicating a tendency for the
weights recovered by optimal design to lie closer to the plane spanned by
the true weight vectors. However, because the network is nonlinear and
the input signals weighted by w; and w; have to go through the nonlinear
gain function g separately (see Figure 2a), it is generally not sufficient for
the estimated weights to simply lie in the plane spanned by the true weight
vectors in order to yield accurate predictions, as would be the case if the
gain g were linear. In the next section, we verify directly that parameter
estimation by optimal design provides more accurate predictions in novel
situations compared to random stimuli.

2.3 Accurate Estimation Helps Accurate Prediction. As we see from
the examples in Figures 1 and 2, optimally designed stimuli allow the
parameters of the neural networks to be estimated more accurately than
random stimuli. However, in experimental applications, the success of a
model is measured by how well it predicts the responses to novel stimuli
(Wu et al., 2006). A model with wrong parameter values might still make
accurate predictions, especially when diverse values of confounded param-
eters may yield nearly identical input-output relations of neural networks,
at least over a restricted set of stimuli (DiMattina & Zhang, 2010).

To test this possibility directly using the simple network shown in
Figure 1a, we compared the predictions of the estimated models against
the responses by the true model to a novel stimulus set comprising of 95
spot stimuli (see Figure 3a inset), each with a small localized activity bump
3 receptors wide, centered at location i =2,...,20 and with amplitude
of 0.2,0.4, 0.6, 0.8, 1. All responses were computed without adding noise.
As shown in Figure 3b, the median square error of n = 300 models esti-
mated using optimally designed stimuli was significantly better than that
of n = 300 models estimated using random stimuli (Wilcoxon rank-sum test,
p = 1.5 x 10~%). Figure 3a shows two representative models whose square
errors are equal to the medians of the two groups. The model estimated
using optimal design does a nearly perfect job of predicting the true re-
sponses, whereas the model estimated using random stimuli makes poor
predictions for large responses.

To explain intuitively why the parameters obtained from random stim-
uli have yielded poorer predictions, we notice that diverse values of con-
founded parameters can mimic the same true input-output relationship
only with respect to a restricted stimulus set (here, the random stimuli),
which drives the neuron over a small dynamic range so that the gain func-
tion (a sigmoid) is well approximated by a specific function (here an ex-
ponential). For novel stimuli that can drive the neuron over a much wider
range of firing rate, the approximation is no longer valid, and the actual
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Figure 3: Accurate parameter estimation is important for accurately predicting
the responses to novel stimuli. (a) The true model is as shown in Figure 1a. When
tested on a set of novel spot stimuli (inset), a representative model obtained
from optimally designed stimuli made predictions much closer to the truth
than a representative model obtained from random stimuli. Each of the two
representative models was selected as the one with median square error from
n = 300 models obtained from repeated trials. (b) Box plot showing that the
models (n = 300) estimated using optimally designed stimuli do a significantly
better job of predicting the responses than the models (n = 300) estimated using
random stimuli. (c) Same as panel a, but for the true model shown in Figure 2a,
and with novel test stimuli being a set of natural image patches (examples
shown in inset). (d) Same as panel b, but for the model in Figure 2a.

responses follow the fixed sigmoidal gain function, which now deviates
significantly from the approximating function (e.g., exponential), which al-
lows parameter confounding. Now diverse values of the parameters can no
longer lead to the same input-output relationship and, hence, the poor
predictions. For example, the saturation in the predicted responses in
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Figure 3a (random stimuli) is due to underestimation of the output weight
and overestimation of the confounded bias, so that the model predicts,
wrongly, that responses should saturate at large input. By contrast, the pa-
rameters obtained from optimally designed stimuli are close to the truth
and therefore should make good predictions for any novel stimuli.

Similarly, for the network model in Figure 2a, we interpreted it as a visual
neuron and tested it on a novel set of 3000 natural image patches (see Figure
3c inset) taken from an existing image database (van Hateren & van der
Schaaf, 1998). As shown in Figure 3d, the median square error of n = 50
models estimated using optimal design was significantly less than that of
n = 50 models estimated using random stimuli (Wilcoxon rank-sum test,
p = 5.3 x 107°). Figure 3c shows two representative models with median
squared errors. Although both models can account for small-amplitude
responses, the model estimated using random stimuli systematically un-
derpredicts large responses, whereas the model estimated using optimal
design does a much better job. Based on these results, we conclude that in
our examples in Figures 1 and 2, accurate estimation of parameters allows
better predictions in novel situations.

2.4 Choice of Utility Functions. In the examples shown in Figures 1
and 2, we made use of two different utility functions for optimal stimulus
design. Here we briefly point out how they differ and justify our use of each
function, while leaving their derivations to the next section.

The D-optimal utility function, equation 2.6, used for the example in
Figure 1 is based on the asymptotic approximation of the posterior density
as a gaussian whose variance is the inverse Fisher information matrix (see
the next section). Utility functions like D-optimal and A-optimal design
(see Table 2) based on the asymptotic gaussian assumption permit faster
computation since they do not involve integration over possible responses
(Muller & Parmigiani, 1995). The D-optimality criterion has been widely
used for its simplicity and ease of implementation (Atkinson & Donev,
1992), and we chose it for the same reason. By contrast, the mutual infor-
mation criterion (Paninski, 2005; Lewi et al., 2009) and square error criteria
(Muller & Parmigiani, 1995) directly optimize the stimulus with respect to
the current posterior density and do not rely on approximations, although
their evaluation requires integration over all possible responses and are
thus computationally more expensive. We adopt the mutual information
criterion for the example in Figure 2 and use a gaussian sum approximation
under several simplifying assumptions in order to speed up computation.
Although various optimality criteria look distinctive, they are often asymp-
totically related (Atkinson & Donev, 1992; Chaloner & Verdinelli, 1995) and
therefore do not present mutually exclusive choices. Although our choice
and implementation of utility functions appear adequate for our prob-
lems, it is not our intention in this letter to show that they are better than
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other alternatives. More systematic comparison would be helpful in future
studies.

3 Implementation of Optimal Design

In this section, we present the details of the implementation of optimal
experimental design for the examples illustrated in Figures 1 and 2.

3.1 Center-Surround Model Implementation

3.1.1 Derivation of Utility Function. The center-surround network in
Figure 1 has Poisson distributed responses, and the mean response to stim-
ulus x is specified by the tuning function f(x, 8). Let the first n observations
of the stimulus-response data be D, = {(x1,71), ..., (X4, 74) }. The likelihood
of the data is given by

n x;, 0) .
p(Dy | 6) = Hf(ri..)e Fx) (3.1)
i=1 r

Alternatively, if the response has gaussian noise, the likelihood becomes

= 1 .
p(D, | 6) = 1_[ mﬂg*(ﬁ fxi.0))*/20% (3.2)

i=1
The posterior of the parameters follows Bayes’ rule,

p(Du | 0)po(6)

[ p(Dy | 0)po(0)d6’ (3.3)

P(0 | Dn) =

where pg(0) is the prior. We write the posterior as p,(8) = p(6 | Dy).

The optimally designed stimuli in Figure 1 is based on the D-optimality
criterion (Atkinson & Donev, 1992), which chooses at each step the stimulus
x that optimizes the expected utility,

u® (x) = / Fps1 (X1, - . Xns X, 0)[ p(8)d0, (3.4)

where F,..1(x1, ..., Xy, X, 0) is the Fisher information matrix and | - | denotes
the determinant. The Fisher information matrix is defined by

Fu(X1, ..., Xn, 0) = — (Vo Vg In p(D, | 0)), (3.5)
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where the average () is over all possible responses of all n observations,
Vo = 3/00, and p(D, | 0) is given by either equation 3.1 for Poisson noise
or equation 3.2 for gaussian noise. The rationale behind equation 3.4 is
that the posterior, equation 3.3, is asymptotically a normal distribution
whose covariance is given by the inverse Fisher information matrix (van der
Vart, 1998). Therefore, intuitively, a set of stimuli that maximizes the Fisher
information should minimize the uncertainty, or spread, of our parameter
estimates obtained from the posterior parameter distribution.

Since we assume in equations 3.1 and 3.2 that the responses to different
stimulus presentations are independent, the Fisher information matrix is
additive with respect to the observations and obeys the recursive formula,

1
Fo1(X1, ..., %0 X, 0) = Fu(x1, ..., X, 0) + ;Vof(x, 0)Ve f(x,0)", (3.6)

where v = f(x, 8) for Poisson noise and v = o2 for gaussian noise (Kay,
1993). Since

A+ v =|A](1+Vv'A7Y) (3.7)

holds for an arbitrary invertible matrix A and column vector v (Harville,
1997), we obtain

|F1’l (X,...,xn,x,0)| = |F1’l(0)|
+1(x1 (3.8)

(14 T 0 0% )

where F,(0) = F,(x1, ..., X, 8) (Atkinson & Donev, 1992). Thus, maximiz-
ing the utility function in equation 3.4 is equivalent to maximizing the
following utility function,

uﬁ)l(x) = / % [Vo f(x, 0)"F,(0)Vo f(x, 0)] pu(6)d0, (3.9)

which was used for the example in Figure 1.

3.1.2 Particle Filter Approximation. To practically evaluate our D-optimal
utility function, equation 3.9, we make use of a particle filter representation
(Gordon, Salmond, & Smith, 1993; Carpenter, Clifford, & Fearnhead, 1999;
Gramacy & Polson, 2009) of the continuous posterior p,(f) defined on
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particles {01, ..., 0y}, and we denote this discrete density by p,(6;) with
Z,Ii 1 Pn(0;) = 1. Now the utility function 3.9 is approximated by

N
U=y <%Vof(x, 0:)"F, ' (0:)Vs f (x, oi)) Pul(67), (3.10)

i=1

where v = f(x, 8;) for Poisson noise and v = o2 for gaussian noise. We
used v = f(x, 0;) and N = 250 particles and a uniform prior py(f) with the
initial set of particles (po(#;) = 1/N) drawn uniformly from 6 =+ |6|/2. (For
comparison, we also used @ = |0| as a broader prior distribution, and the
results of the optimal design method were similar, with a moderate increase
of the median square error from 0.19 to 0.32. In contrast, the median square
error of estimation using random stimuli increased from 8.1 to 141.) Since the
continuous prior py(#) was uniform over the range of permissible particle
locations, it did not figure into the recursive Bayesian update equation 3.3.
For the results in Figure 1d, we performed 300 Monte Carlo experiments
with 100 stimuli per experiment (either random or optimally designed by
optimizing equation 3.10). At the end of each experiment, a final estimate
was attained by maximizing the log-likelihood function,

LDy 6)=-)" i(n — f(x,0,))* —Iny/277;, (3.11)

i=1 2ri

which follows from approximating equation 3.1 with a gaussian whose
variance is equal to the mean. The optimization uses the Matlab function
fmincon, with search bounds 6 +10|6|, and the search initialized at the
particle with the highest probability:

0 = arg max Pn(0;). (3.12)

As new stimulus-response observations were obtained, we updated the
particle filter weights recursively by

1
Puy1 (0 | Dpyr) = zP((rnH, Xu+1) | 0:)pn (0; 1 Dy, (3.13)

where Z is a normalizing constant. Since a particle filter tends to degenerate
to a small number of effective particles quantified by Neg = 1/ le Pn(6:)?,
after every 20 stimulus presentations, we obtained a new set of particles for
the filter by resampling the current continuous posterior density p,(6 | D,)
by Markov chain Monte Carlo (MCMC) sampling using the random-walk
Metropolis algorithm (Gilks, Richardson, & Spiegelhalter, 1995; Liu, 2001).
Because of the periodic updating, the particle locations were not fixed in
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the long run. Our target is the posterior in equation 3.3, and our proposal
distribution for the kth step in the chain is a gaussian N'(0 | 0y, pI), where
the mean 6y is the kth accepted particle and I is the identity matrix. The
chain is initialized at 6 as in equation 3.12. To keep the acceptance rate for
the chain near the ideal 20% (Gilks et al., 1995), we used p = 0.1, doubling
p whenever the acceptance rate from the previous MCMC resampling of
the continuous posterior exceeded 50% and halving it when it went below
1%. Intuitively, if our acceptance rate is too high (or low), then our proposal
distribution is not broad (or narrow) enough.

To evaluate the utility function 3.10, we maintained a set of Fisher in-
formation matrices at each particle, and after each new stimulus x, we
updated the Fisher information matrix at each particle recursively using
equation 3.6. After obtaining a new set of particles using the MCMC resam-
pling procedure described above, we used all available stimuli xi, .. ., X,
collected up to that point to compute the Fisher information matrix for each
new particle. Since there are 10 parameters to estimate (see Table 1), at least
10 independent observations are needed to make our Fisher information
matrix full rank, so at the start of the experiment, we added an identity
matrix I to each Fisher information matrix until we had collected 20 data
points (twice the number of parameters in Table 1) in order to avoid matrix
degeneracy. To speed up computation, we evaluated equation 3.10 using a
reduced posterior defined on the Ne/2 particles with the largest posterior
probability, using at least 10 and at most 50 particles.

The main goal of the example in Figure 1 was to demonstrate the use-
fulness of optimal design as a method for overcoming the problem of
continuous parameter confounding, which can make accurate parameter
estimation difficult in hierarchical neural network models (DiMattina &
Zhang, 2010). Although the numerical methods used in this example were
adequate for this network model, they may not generalize well to problems
in higher dimensions. In particular, the particle filter methods used for the
10-dimensional problem in Figure 1 can potentially break down in higher di-
mensions, as many studies have shown that the number of particles needed
to accurately represent the posterior density grows exponentially with the
parameter space dimension (Snyder, Bengtsson, Bickel, & Anderson, 2008;
Bengtsson, Bickel, & Li, 2008; Bickel, Li, & Bengtsson, 2008). MCMC was a
simple resampling technique that was easy to implement for our problem
in Figure 1, and it allowed us to track the posterior with a small number
of particles so the optimization of equation 3.10 was reasonably fast (2-3
seconds per stimulus on a 2.4 GHz quad core PC). However, since the eval-
uations of the posterior density required by MCMC depend on all previous
observations D, up to that point, the MCMC resampling procedure gets
slower in direct proportion to the number of stimuli that have been gen-
erated so far. Thus, for implementation of online experiments, the particle
filter methods with MCMC are limited by the dimension of the parameter
space and the number of stimuli to be generated. For models with many
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parameters, such as the network in Figure 2a, we suggest using a gaussian-
sum extended Kalman filter (EKF) method combined with optimization by
heuristic search, as explained in the next section. This method worked faster
(about 1 second per stimulus) in higher dimensions (about 300 in our ex-
amples), even though it may also become unreliable when the linearization
in EKF is inaccurate or the prior is poorly chosen (Haykin, 2001).

3.2 Three-Layer Subunit Model Implementation

3.2.1 Posterior Approximation by Gaussian Sum. We write the posterior
density of model parameters given the data D, = {(xl, 71)s ooy (Xns rn)} as
pn(0) = pu(0 | Dy), and approximate it by a sum of gaussians (Alspach &
Sorenson, 1972; Hering & Simandl, 2007):

K
pa(0) = P p (), (3.14)
j=1
where
pO) =N (0 | w, Ef])) , (3.15)

and the mixing weights o) > 0 with Z;;l o) =1 so that equation 3.14

integrates to unity. For the prior distribution py(f), we assume that oz(()j ) =

1/K, 2(07 ) = kI (with k = 1/4), and [L(()] )is drawn randomly from a gaussian
N( | v, kI), where components of v were set to —2 for hidden unit biases
and 0 otherwise.

Approximating the Poisson neural response by a gaussian whose vari-
ance is equal to the mean (Dean, 1981) allows us to employ the EKF formal-
ism (Alspach & Sorenson, 1972; Haykin, 2001) to update the parameters of
the gaussian sum, given each new observation. The gaussian approximation
for response r is

p(r1x,0)=N(r| f(x,0),0%), (3.16)

where the tuning function f(x, #) is the mean response to stimulus x, and
the variance 02 = f(x, 0).

Given the posterior density p,(0) in equation 3.14, near the jth gaussian
peak 1, we can linearly approximate the tuning function by

f(x,0) ~ b)) +a)Te, (3.17)
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where
) =Vofoeud). b = fox ) -l ). (3.18)

By ignoring all other gaussian bumps except for the jth one, the probability
in equation 3.16 becomes approximately

pP@r | x,0) =N | b)) + a0, o2). (3.19)

Assuming that the gaussian bumps in equation 3.14 have little overlap, we
can approximate equation 3.16 as

pur | x,0) = Za DD | x, 9), (3.20)

where subscript n indicates that the posterior p,(#) with n data points has
been given.

Using Bayes’ rule, as new data (x, ) = (X1, 'n+1) are observed, we up-
date the means and variances of each of the gaussian bumps in the approxi-
mating sum, equation 3.14, separately and then update the relative weights

o of each bump. Using Bayes’ rule,

P 1 x. 0)pi(6)
P 1%)

pn+1(0 | x,7) = (3.21)

and the fact that the product of two gaussians is a gaussian, we have
pUL@ 1 x. 1) = (0 ) ijjl) (3.22)
with
0 (j) 1 () () ()
”’n+1 =Ky +— 02 2 1a ( f(X My )) (3-23)

E(] aff)an])TE(]

- 324
o2 +a Tyl

n

-1
() n—1 1 o T )
) = ():W + ﬁa;’)afj) ) =30

together with a succinct form for p (r | x), which is useful for many of our
calculations (Bishop, 2006):

PG 1) =N (r | fox ml), o +afTEPal)). (3.25)
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In the last step of equation 3.24, we applied the Woodbury matrix lemma
(Harville, 1997) in order to avoid matrix inversion. After updating the means
and variances of each gaussian bump, we update the mixing weights by

W) — Vper 1x wl)y

] = (3.26)
Zf 10551]) (r Ix, ”’n+)1)

These results are similar to those of the Kalman filter (Kalman, 1960) and
its extensions (Alspach & Sorenson, 1972; Brown, Frank, Tang, Quirk, &
Wilson, 1998; Haykin, 2001; Hering & Simandl, 2007).

In the time-varying example shown in Figures 2f and 2g, we assumed 10
gaussian bumps. In the example, which estimates additive models having
m =1, 2,3 hidden subunits, we used K = 3, 10, 10 gaussians, respectively,
in our approximation in equation 3.14.

One known weakness of the EKF is that it can fail to accurately track the
posterior density due to accumulation of error (Haykin, 2001). This prob-
lem could in principle be rectified by periodic resampling of the posterior
density in order to define a more accurate approximation of the posterior,
as we did for the particle filter approximation used in Figure 1. In our appli-
cation of the EKF, we did not use a resampling step but simply applied the
standard recursive updating procedure outlined above, which we found to
be adequate for our examples. This is probably because unlike a particle
filter model, even when there is only a single gaussian bump, it may still be
a reasonably accurate representation of the true posterior (see the examples
in section 3.3).

3.2.2 Derivation of Utility Function with Gaussian Sum Approximation.
For the estimation phase of the experiments illustrated in Figures 2 and 6,
we design the stimulus by minimizing an information-theoretic estimation
utility function (Paninski, 2005), which is the expected value of the posterior
entropy (see equation 3.32). Here we compute this utility function and
reduce it to a simpler form (see equation 3.38) using the gaussian sum
approximation considered above.

Let the posterior be given by a gaussian sum as in equation 3.14. First,
we compute its entropy:

H{pu(0)] = — [ Pa(®)In p, (0)d0 (3.27)

K K
== oY / p)(6)In (Za pO( ) (3.28)
j=1 k=1
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K
<— Zoc”/p”(é’)ln( () 1>(o)) 0 (3.29)
]=1
=3 oY) [ ) 0)]—Za,gf>1na;f> (3.30)
j=1 =
1K ‘ Ko A
=5 > Pz =Y e Ina). (3.31)

j=1

The inequality in step 3.29 holds because the logarithm is a monotonically
increasing function and each ozn p” (0) > 0. The inequality 3.29 becomes
approximately an equality when there is little overlap between different
gaussian bumps pzj ) and pﬁ,k) so that all cross-terms with j # k vanish.
(See section 3.3 for more discussion of this approximation.) The last step,

equation 3.31, follows from the entropy H [p (0)] =1ln 1=+ C for a

gaussian (see equation 3.15), and the constant C does not affect our op-
timization and is ignored in equation 3.31. In our simulations, instead of
minimizing the true entropy, we minimize the upper bound, equation 3.31.

Expression 3.30 has an information-theoretic interpretation: The second
term is the entropy of the random variable j, which measures our uncer-
tainty about which gaussian bump is correct, and the first term is a weighted
sum of the conditional entropy of parameter # for each gaussian bump j,
which measures the uncertainty of each gaussian bump. In optimal design,
it is desirable to minimize both terms.

We are now ready to define our utility function as the expected value of
the entropy of the subsequent posterior p,11(0 | X,7) = pu41(0 | Dy, x, 1):

U 00=— [ Hipa® 10l per [dr (3.32)

f ZanH 1r1|)3nJr1 ZanH lnoan p(r | x)dr

(3.33)

'z—; / (ln|2(+1|) p(r | x)dr, (3.34)

where step 3.33 follows from the bound 3.31 and the approximation in
step 3.34 follows from the empirical observation that, with the gaussian
sum approximation, at most times nearly all of the probability mass is

focused on asingle gaussian bump, say, with index k such that ank ~ 1 while
an ~ 0 for all other j # k. As the experiment progresses, the preferred
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bump may change, and there are brief periods where the mass is somewhat
evenly distributed between two or more bumps, but for the majority of
trials, this approximation is valid. (See section 3.3 for an explicit test of this
approximation.)

Using equation 3.24 and the matrix identity equation 3.7, we obtain

ln’):nﬂ‘_ln‘Ek)’—ln(l—i- ! k>T>:;k>a§f>>. (3.35)

Since the first term on the right-hand side does not depend on x or r, maxi-
mizing equation 3.34 is equivalent to maximizing a new utility function:

u® ()= / (1 + ! —aPTzPa k>> p(r|x)dr (3.36)

1
—In (1 + —zag‘ﬂzfpaﬁf)) . (3.37)
o

The last step obtains because for gaussian distribution, the Fisher infor-
mation is independent of r (Kay, 1993), and therefore all the variables in

the logarithm do not depend on r, including al! by equation 3.18, z®

by equation 3.24 (recursive relation), and 0> = f(x, 1), Thus maximizing
equation 3.37 is equivalent to maximizing the final utility function,

M(x) a(k Ty ®a®), (3.38)

which was used for the examples in Figures 2 and 3 with the simplifying
assumption of constant a?.

In our derivation of the final utility function, equation 3.38, we have
made use of several crude approximations for the sake of computational
tractability. In our numerical simulations, we treat the response variance o
as a constant, while in general, it depends on the stimulus x. We assume
minimal overlap between different gaussian bumps in order to obtain an
upper bound, equation 3.29, for the entropy, and we minimize this bound
rather than the entropy itself. We further assume that the majority of the
weight lies on a single gaussian, which was approximately true for our
examples but might break down for other examples. We return to these
issues with concrete examples in section 3.3.

3.2.3 Stimulus Generation. Direct numerical optimization of the utility
function equation 3.38 in the 2 x 12% = 288 dimensional stimulus space for
the examples in this study (see Figures 2 and 6) is computationally intensive
and may not be practical during real-time online experiments. Therefore,



Active Data Collection for Nonlinear Neural Models 2265

we follow Lewi et al. (2009) in developing a heuristic search over a restricted
set of stimuli.

Previous work shows that in order to accurately estimate the parameters
of a neural network, it is desirable to present stimuli that drive the hidden
units of the network over the full range of their gain function in order
to prevent continuous parameter confounding (DiMattina & Zhang, 2010).
This fact is visible from the example in Figure 1 (see panel b). Therefore, the
main motivation for our heuristic will be to generate a finite set of stimuli
that we expect to drive each of the hidden unit gain functions over their
full range, given our current estimates of the weights of each hidden unit.

In our example, the neural networks have multiple hidden subunits, and
we wish to drive each one of these subunits over their full range in all possi-
ble combinations of high and low activities for different subunits, given our
current parameter estimates 1) as the most likely (kth) gaussian peak. Sup-
pose we have m hidden subunits. From ;Lilk) we extract the current estimates
of the weight vectors wy, ..., wy, for each of the subunits to form the matrix

W:[WL'H’Wm’W]v (339)

where w is a random column vector, which is picked differently for each
of the stimuli we generate. To obtain a new set of orthonormal vectors, we
apply Gram-Schmidt to equation 3.39 and obtain Q = [qi, ..., Qum, qm+1],
whose columns span the same space as those of W but enjoy orthonormality.
Each stimulus we generate is a linear combination given by

X=C1q1 +---+ Cnqm + Cn+19m+1 » (340)

where coefficients c¢; are chosen randomly as follows. For a network with m
hidden units, we take N,, evenly spaced values wy, ..., oy, from the interval
[-E,E]and putc; = w,/mfori =1,...,m, where wj, is picked randomly

fromthelist @i, . .., wy,. We set the last coefficient as cyp1 =/ E2 — Y 1", ci2

so that the stimulus x is normalized to have Euclidean norm E.

Clearly this heuristic will generate stimuli that are various linear combi-
nations of the columns of Q and all have power E2. The vectors qQis -+ qm
span the same space as the weight vectors wy, ..., wy,, while vector q, 41
also contains information about the random vector w. If our current param-
eter estimate p. is reasonably close to the true parameters, this stimulus
set should drive the hidden units of the network over a wide range of their
gain functions, and in all possible combinations of high and low activity
across the population of hidden units. We optimize the utility function over
this finite stimulus set. As shown by a special example in the next section,
this heuristic method can sometimes yield parameter estimation nearly as
accurate as that obtained by full optimization.
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In the example in Figure 2, the true model has m = 2 hidden units. We
used N, =10 evenly spaced values from the interval [—E, E]. The total
number of stimuli generated was N7 = 100. Since our particular example
assumes an amplitude constraint rather than a power constraint, as a final
processing step we set all positive components of each of our stimuli to
Xmax = 1 and all negative components to 0 so that the stimulus amplitude
lies in the range [0, Xmax]. Generating each stimulus took about 1 second on
a Dell Inspiron desktop (2.4 GHz quad core).

For model comparison (see section 4), we also considered models with
m = 1 hidden unit or m = 3 hidden units. In these two cases, the numbers
of evenly spaced values were N; = 50 and N3 = 5, while the total numbers
of stimuli were N} =50 and Nj = 125. For the time-varying example in
Figures 2f and 2g, we used N7 = 100 stimuli.

3.3 Testing Numerical Approximations Using Toy Problems. The ex-
amples presented in the preceding sections used several simplifying as-
sumptions and numerical approximations that were not tested explicitly. In
this section, we will do the tests on the low-dimensional toy models shown
in Figures 4a and 5a, which are easier to analyze, at least numerically.

3.3.1 Testing Gaussian Sum Approximations and Utility Function Optimiza-
tion. Figure 4a illustrates the simplest possible three-layer network, having
a single unit in the input, hidden, and output layers. We will use this model
to examine the optimization of the utility function 3.38 and assess the va-
lidity of both our gaussian sum approximation 2.11 and our gaussian sum
entropy approximation 3.29. This model has a one-dimenisional input space
x € [-5, 5], permitting us to easily visualize and globally optimize the util-
ity function. The response of this model has Poisson distribution, with its
mean given by

f(x,0) = Kvg (wx + wo), (3.41)

where g(u) = 1/(1 4+ e™*) is the gain function, and K = 50 and wy = —2 are
fixed so that our model parameters are 6 = (v, w), with the true values
given by = (1, 2). Given the mean value p = (v, w)" of the tallest peak in
the current gaussian sum posterior, it is simple to compute

Vo f(x. m) = K [vfg(“;;: fﬁ))o)} : (3.42)

Let the covariance matrix of this gaussian be givenby X = {03} (i, j = 1,2),
and we may write the expected utility of the next stimulus x (see equation
3.38) as

2

UB(x) = 0118 + 20120x¢'g + o2 (vxg’) (3.43)
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Figure 4: Testing numerical methods using a simple toy model with a single
hidden unit. (a) A simple neural network model having a single hidden unit and
a single input. (b) Input stimulus x € [—5, 5] is chosen to optimize the expected
utility function in equation 3.38. As the experiment progresses, the utility is
alternately optimized at one of two locations. (c) The shapes of the utility
function 3.38 at several stages of the experiments. The locations that maximize
the utility functions (black dots on the x-axis) correspond to the stimuli plotted
in panel b. (d) True posterior distribution sampled by Markov chain Monte
Carlo method at several stages of the experiments. (e) The weights on each
of the K =4 gaussian bumps in the gaussian sum approximations during
early iterations of experiments are represented by the diameters of the dots.
(f) Median entropy of 100 Monte Carlo trials computed exactly using equation
3.28 (black curve) or approximately using the upper-bound equation 3.29
(gray curve). The medians are very similar, and therefore the bound is quite
tight. Curves of the 25th and 75th percentiles are too close to the medians and
are not shown here to reduce clutter. (g) Median KL distance between the true
posterior and the gaussian sum approximation over 50 Monte Carlo trials with
K = 4 or 40 gaussians. (h) Median of the entropy index H, (see equation 3.45)
for the gaussian sum weights over 50 Monte Carlo trials. Even when the number
of gaussians in the sum is increased by an order of magnitude, the entropy
decreases rapidly toward 0, indicating that most weight is on a single bump.

where ¢ = g(wx 4+ wp) and unity response noise variance is assumed in
equation 3.38.

We can gain some intuition for how stimuli x may be chosen to op-
timize the utility by examining equation 3.43 in detail. Suppose that we
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have nearly complete certainty of w so that oy & 0, and little covariance
between w and v so that o1, & 0. Then equation 3.43 is approximately
U®)(x) = 011¢(wx + wp)?, which is maximized for positive weight w > 0
and monotonically increasing ¢ when input x assumes the largest per-
missible value (x = 5). Similarly, assuming that we have nearly complete
certainty of v and negligible covariance (011, 012 ~ 0), we may approxi-
mate equation 3.43 by U®(x) = o2 (vxg'(wx + wp))?. We maximize UE)(x)
by maximizing (xg'(wx + wyp))?, and find x = 1.3797, using the true param-
eters. (Another local maximum at x = —0.5474 has a smaller peak.)

From the considerations above, we might expect the utility function to be
maximized at two distinct locations (x = 5 or x = 1.3797) as the experiment
progresses and the parameter estimates converge to the truth. Figure 4b
shows that this is exactly what happens in simulation (dashed lines indicat-
ing the two theoretical locations). Figure 4c shows the utility function (see
equation 3.43) at four different iterations of the procedure, and the input
that maximizes the utility function is indicated by the black dot.

Next, to test whether the bound in equation 3.29 is a good approximation
for gaussian sum entropy, we evaluated this bound and the exact expression
3.28 by Monte Carlo integration and made a direct comparison between the
two over 100 repeated trials. As shown in Figure 4f, the medians of the
two methods are very similar, with the approximate entropy being slightly
higher on average, which we would expect because our approximation is
actually a bound. In this example, the bound is relatively tight and therefore
may serve as a reasonable approximation. In general, we minimize the
upper bound 3.31 of the entropy instead of the true entropy 3.27. The bound
approaches the true entropy when there is little overlap among different
gaussian bumps. Even when the bound is not tight, minimizing an upper
bound may still be useful.

Finally, we directly verify the accuracy of our gaussian sum represen-
tation (see equation 2.11) of the true posterior density by computing at
each iteration the Kullback-Leibler (KL) divergence between the two. The
true posterior was sampled by the MCMC method described in section
3.1.2. As shown by Figure 4g, for 100 repeated experiments, the median
KL divergence between the two distributions goes to 0 as the experiment
proceeds, demonstrating the eventual convergence of our gaussian sum
approximation (see equation 2.11) to the true posterior.

3.3.2 Testing the Heuristic Search Method. Here we will use the network
model with two hidden units (see Figure 5a) to test our heuristic search
method, as used for the example in Figure 2 and described in section
3.2.3, and compare it against direct optimization of the utility function
3.38. This model has Poisson-distributed responses with the mean given

by

f(x,0)=h(ng (w?x + wo1) + 128 (ng + wp)), (3.44)



Active Data Collection for Nonlinear Neural Models 2269

a Output r b P . 12 i 0
Gain function h % 7|+ -ecesus @
/ h O +Noise . 6 °-co-0:00 Lonannd
g5
Gain function gy v 2
! 2 o 47 {___J
g . L __J
a 3
ol
1 . ececes €80000
0 10 20 30 40
Number of stimuli
Inputs
¢ d ------- Random e
60 sor Heuristic
------- Random
) —— Optimal
] Heuristic
£ 40 [t )
o g —— Optimal
o
]
3
o
w
- ! -100 . !
0 400 800 0 400 800
Number of stimuli Number of stimuli Number of stimuli

Figure 5: Testing numerical methods using another toy model with two hidden
units. (a) Simple neural model having two hidden units. Top insets: Hidden unit
and output unit gain functions. Bottom insets: True input weights. (b) Plots of
the weights on each of the K = 7 gaussian bumps in the gaussian sum approx-
imations during early iterations of experiments. (c) Median square errors over
100 Monte Carlo trials using either direct optimization over full stimulus space
(black curve) or optimization over a finite set generated using our heuristic (gray
curve) are about the same, and both are much better than that using random
stimuli (dashed curves). Curves denoting the 25th and 75th percentiles are very
close to the medians and not shown here. (d) Same as panel ¢ but for entropy.
(e) The entropy index H, (see equation 3.45) vanishes quickly regardless of the
number of gaussian bumps used (K =7 or 70), indicating the eventual domi-
nance by a single bump. The results shown are the medians from 50 Monte Carlo
trials.

where h(u) =e*, g(u) =1/(1+e7%), and each input x; in x = (x1, ..., X11)
lies in the range [0,1]. The parameter set for this model is 6 =
{v1, v2, wo1, wo2, W1, Wp}, with the true parameter values given by v; = v, =
3, wo1 = wy = —1, and wy, wp, as shown in the insets at the bottom of
Figure 5a.
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Direct optimization of the utility function 3.38 was implemented by
performing an exhaustive search over the set of all 2!* = 2048 possible
stimuli, where each bin is either 1 or 0, and then using the best stimulus
in this discrete set as the initial search point for numerical maximization
in the full stimulus space by constraint optimization (Matlab fmincon).
We also initiated the optimization procedure from random starting points
in the full stimulus space, and the results always seemed to be close to
binary stimulus patterns (bins with activities below 0.5 averaged to 0.0073,
while those above 0.5 averaged to 0.9925, N = 800 stimuli). This observation
justifies our exhaustive search method described above.

As shown in Figure 5c, over 100 repeated numerical experiments,
the median square errors attained using our heuristic method were very
similar to those attained by direct optimization, and both were substantially
less than that attained using random stimuli. Figure 5d shows similar
results with entropy measure. As an additional control, we optimized our
entropy criterion 3.38 over a finite set of random stimuli, attaining better
results than presenting random stimuli but significantly worse results than
optimizing over an equally large set of stimuli generated by our heuristic
(not shown). The Wilcoxon rank-sum test failed to find any significant
difference between the results (squared error or entropy) attained by direct
optimization and our heuristic method at stimulus numbers 50, 100, 200,
and 800. Therefore, in this example, optimizing over a finite set of stimuli
generated by our heuristic method performs nearly as well as optimization
in the full stimulus space.

3.3.3 Varying the Number of Gaussian Bumps. One free variable in the
specification of the gaussian sum approximation (see equation 2.11) to the
posterior is the number K of gaussians. In general, increasing K improves
the quality of the approximation while making the EKF update step slower.
In the examples studied in Figure 2, we simply set K to keep the procedure
fast enough to use in real experiments (~ 1 second per stimulus). In this
section, we use the two toy models in Figures 4a and 5a to study the effects
of increasing the number of gaussian bumps. We find that even when K
is increased by an order of magnitude, the majority of the weight still lies
on a single bump or a few bumps, possibly due to the asymptotically near-
gaussian shape of the true posterior as the trial progresses.

We quantify the extent to which the weight is concentrated on a single
gaussian with the index

1 . .
Ho=——— Y ol nalj), (3.45)

where o is the weight on the jth gaussian bump for stimulus number 7.

Note that we always have 0 < H, < 1. The minimum H, = 0 occurs when
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all of the weight in the gaussian sum lies on a single bump (@ = 1forsome
k, oz,(/ ) = 0 for all j # k). The maximum H, =1 occurs when the weight is
evenly distributed among all of the bumps (@ = 1/K for all )

For the two-dimensional example shown in Figure 4a, we can directly
visualize the posterior density and find that in most cases, the posterior
resembles a unimodal gaussian density after a small number of stimuli
(see the examples in Figure 4d). We have also visualized the weight dis-
tribution in the gaussian sum and found that at any given time, the ma-
jority of weight is often located on a single bump or split between only
a few bumps, with the preferred bump changing during the early phases
of the experiment, but ultimately settling on a single gaussian bump (see
Figures 4e and 5b). Consistent with the intuitive observations above, we
find that for both toy models, the entropy index H, decreases quickly to
nearly 0, even when the number K of gaussian bumps varies by an order
of magnitude (see Figures 4h and 5e). Taken together, these results suggest
a degenerate gaussian sum approximation with a single dominating bump
and provide a justification for our single-bump approximation used in
section 3.2.

4 Estimating and Comparing Multiple Neural Networks

4.1 A Two-Stage Procedure for Online Experiments. Neuroscientists
often entertain multiple possibilities when considering the appropriate
model to describe sensory neurons. Therefore, it is of interest to develop
methods that use active data collection for the dual goals of estimating the
parameters of multiple models and discriminating between these models.
In general the best stimuli for model estimation may not be the most useful
for model discrimination (Nelson, 2005), and so very few studies to date
have addressed the issue of how to choose stimuli adaptively in order to
combine these two distinct goals (Sugiyama & Rubens, 2008). One recent
study (Cavagnaro et al., 2010) presents an information-theoretic approach
to model discrimination based on choosing stimuli that most greatly de-
crease the entropy of a distribution defined on the space of possible mod-
els. However, in this method, estimating the relative probability of each
model requires integration over the unknown parameters of that model,
which can be computationally demanding for high-dimensional models
like those considered here.

In light of these considerations, we propose a two-phase active data
collection procedure illustrated schematically in Figure 6a for identifying
the best model in a set of M > 2 candidate models. In the first or estima-
tion, phase (E-phase), optimal design is used to generate stimuli that are
most useful for estimating the parameters of the candidate models, with the
best stimulus for each model being presented in turn. After the parameters
of each model have been estimated, we start the second, or comparison,
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phase (C-phase) during which stimuli are generated that are optimal for
discriminating the competing models. Although this procedure is by no
means the only possible way to combine estimation and comparison, break-
ing the experiment into sequential phases ensures that we attain a good
estimate of the parameters of each model before we find stimuli to best
discriminate among them. Several optimal design methods for model com-
parison have been considered in the literature (Atkinson & Donev, 1992),
and in sections 4.2.1 and 4.2.2 we derive criteria based on likelihood and
mutual information that are applicable to comparisons of multiple models.
The remainder of this letter illustrates the application of this procedure to
hypothetical neurophysiology experiments.
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4.1.1 Estimation Phase. We want to simultaneously estimate the param-
eters of M candidate network models. For example, indexm =1,2,..., M
could be the number of hidden units in a neural network. For each model
m, we obtain an optimal estimation stimulus by optimizing the expected

utility function Llﬁf ) (x), which depends on the posterior density p,,(0) as
in equation 2.4. Other than the superscript m, the procedure is the same as
before. We design the stimuli for optimally estimating each model in turn

(see Figure 6a).

4.1.2 Comparison Phase. Once parameter estimates 91, ..., 0 M are at-
tained for the M candidate models by maximum likelihood, we compute
the likelihood of each model using the Bayes information criterion (BIC),
which measures how well each model fits the data while penalizing model
complexity (Schwarz, 1978; MacKay, 1992). For a model m having K,, free
parameters, we use

BIC,, =Inp (D, | 0,) — % Inn, (4.1)

where D, = {(x1,71), ..., (Xu, )} denotes the set of data used to estimate
the model. We select the model m with the highest BIC,,.

Figure 6: A two-phase procedure for estimating and comparing competing
nonlinear models using active data collection. (a) To estimate and compare
competing models (e.g., neural networks of varying complexity), first in the
estimation phase, we design stimuli that are optimal for estimating each of the
candidate models in turn, and next in the comparison phase, we generate stim-
uli that are optimal for distinguishing these models. (b) The additive network
model is similar to that in Figure 2a, whereas the multiplicative model assumes
that the subunit activities are combined multiplicatively instead of additively.
The additive model (+) is assumed to be the true model. (c) Percentage of correct
choices of the two models in panel b before and after the comparison phase. With
optimal comparison stimuli presented, we almost always picked the correct
model (red), whereas we were essentially at chance at the start of the compar-
ison phase and did not improve with random stimuli (green) and improved
only somewhat by continuing with optimal estimation stimuli (blue). In each
condition, 100 Monte Carlo experiments were performed. (d) The same data as
in panel ¢, showing that the differential evidence (BIC, — BIC,) in favor of the
true model increases the fastest with the optimal comparison stimuli (red), only
moderately with the optimal estimation stimuli (blue), and hardly at all with the
random stimuli (green). Left: Median differential evidence is shown by the thick
lines. Thin lines denote 25th and 75th percentiles. Right: Differential evidence
for a random sample of 25 individual trials. (e) BIC increment was observed as
the slope of (BIC, — BIC), as exemplified by the red lines in panel d, for 100 in-
dividual trials. The results were consistent with the predictions by equation 4.31.
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Table 4: Some Utility Functions for Model Comparison.

Design Utility u©(x | m) Interpretation

Likelihood Dk [p(r | x,m), p(r | x, j # m)] Relative likelihood of true model

Mutual Dk [p(r | x, m), p(r | x)] Model space entropy
information

Since the data set D, used to estimate the models may not be optimally
suited for discriminating among competing models, we recommend col-
lecting additional data optimized for model comparison during a second
experimental phase (C-phase), during which we design stimuli by optimiz-
ing a comparison utility function U©)(x). We refer to the stimulus x that
maximizes U©)(x) as the optimal comparison stimulus.

There are numerous ways to define optimal stimuli for comparing M
competing models (see Table 4). When M =2 with gaussian noise, the
utility function based on expected change in likelihood in favor of the true
model can be written as

U = (i) — £r()*, (4.2)

where f,(x) is the mean response of model m to stimulus x, using the current
parameter estimate 0,,. The stimulus that maximizes this function elicits the
most different responses by the two models. In the case of Poisson noise,
this utility becomes

UOM) = (fi(x) — f(x)) (In fi(x) — In f(x)), (4.3)

which is invariant when subscripts 1 and 2 are switched. (See section 4.2.1
for derivation.) Alternatively, one may also define a more general utility
function for comparing any number of competing models (M > 2) using
model space entropy:

M
UQx) = > Po(m) D (p(r | x, m), p(r | x)). (4.4)

m=1

where Py(m) is the a priori probability for model m to be true and Dk,
denotes the Kullback-Leibler divergence (see section 4.2.2).

In the hypothetical experiment in Figure 6b for testing two compet-
ing hypotheses about the subunit integration mechanism (additive versus
multiplicative), the data were generated by the true additive model. Our
candidate models include both the additive model (see Figure 6b, left) and
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an incorrect multiplicative model (see Figure 6b, right), which is described
by

fr(x,0) =h (a [[swix+ w01)> , (4.5)

i=1

where « is an output scaling parameter, m = 2 is the number of hidden units,
and the gains g and  are the same as the additive model in equation 2.7. The
parameter set @ = {«, wo1, wo2, W1, Wa} contains 291 parameters. We used
K =10 gaussians in our approximation of the posterior in equation 3.14.

After the two candidate models have been estimated using optimally
designed stimuli, the accuracy of model selection is still close to chance (see
Figure 6¢, “Start”). In the comparison phase, using random noise stimuli
does not rectify this situation (green); using stimuli optimized for model
estimation (i.e., continuing the same procedure as in the estimation phase)
only partially rectifies this (blue); but using stimuli optimized for model
comparison (with the criterion in equation 4.2) leads to nearly perfect
model selection (red). Consistent with this result, the differential evidence
(BIC, — BIC) in favor of the true model increases sharply for the optimal
comparison stimuli but not for the random stimuli and only slightly for
the optimal estimation stimuli (see Figure 6d). Note that for many individ-
ual experiments with optimal comparison stimuli, the differential evidence
changes from negative to positive (see Figure 6d, right), meaning that an
incorrect initial preference for the multiplicative model is corrected to a
final preference for the additive model.

We have also used our two-stage procedure for estimating and compar-
ing models like the one in Figure 2a having m =1, 2, or 3 hidden units.
This analysis yielded similar results (not shown). See section 4.3 for further
analysis on model comparison with the BIC.

4.2 Derivation of Model Comparison Utility Functions. This section
contains the mathematical derivation of the model comparison utility func-
tions used in the examples discussed in the preceding section.

4.2.1 Likelihood-Based Utility Function. In this section we derive the gen-
eral likelihood-based utility function as given by equations 4.18 and 4.19.
This function includes equations 4.2 and 4.3 as special cases.

Given two candidate models equally likely a priori and observations
Dy ={(x1,71), - .., (X4, 74)} generated by one of the two models, we may
compare the models by taking the difference of the log likelihoods,

a2 =Inp(D, | 1) — In p(D, | 2), (4.6)

where model 1 is preferred when A1, > 0 and model 2 is preferred when
A2 < 0. In most experiments, the data set D, is not collected with the goal
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of maximizing |A12|. Here we consider how to collect additional data (x, r)
that maximize the expected change in |Aq,| in order to tip the scales more
solidly in favor of one model or the other.

If model 1 is the true model, then the expected change Aiq, caused by a
new stimulus x is given approximately by

(1)1 P(rlx 3

A)\lz /p(r|x0
p(r | x, 0

) r, 4.7)
)

where 8" and 8 are the final model parameter estimates attained from
data D, (Burnham & Anderson, 2002). Maximizing equation 4.7 with respect
to x will tip the scales most strongly in favor of the true model (model 1).
We readily recognize equation 4.7 as the Kullback-Leibler (KL) diver-
gence (Kullback & Leibler, 1951; Cover & Thomas, 2006), which is denoted

Dy [p(r | x, 9(1)), p(r | x, 9(2))]. A symmetric argument shows that if model
2 is true, the expected change in likelihood in favor of model 2 is given by

Dxilp(r | x, 9(2)), p(r | x, 9(1))]. Since we do not know which model is true,
we arrive at the expected utility function

Ox) = %u(c)(x D)+ %u(c)(x 12), (4.8)
where the conditional expected utility functions are given by
WO | 1) = D [ p(r 1 x.0"), pir 1x.0)] 4.9)

u(x|2) = Dt [p(r 1x. 8%, p(r | x, 9(“)] . (4.10)

We readily observe that equations 4.8 to 4.10 define a symmetrized KL
divergence. The optimal comparison stimulus is obtained by maximizing
UOx).

In the special case where both models have gaussian noise with fixed
variance o, equation 4.8 reduces to the simple and intuitive form

) = 53 (09~ 2007 @)

where fi(x) = fO(x, 9(1)) and fo(x) = f(z)(x,é(z)), with f(x, §™) being
the average response of model m to stimulus x. Equation 4.11 is the same
as equation 4.2 when the constant factor 1/20? is ignored. Thus, the best
stimulus for discriminating two models is the stimulus for which their
predictions of the model response differ the most, and a sum-of-squares
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criterion similar to this one has been used in classic work to define designs
that are T-optimal (Atkinson & Donev, 1992; Atkinson & Fedorov, 1975a,
1975b).

When both models have Poisson noise, we have p(r |x, 9(i)) =
fix)" exp(— fi(x))/r! withi =1, 2. Now equation 4.9 becomes

u©x 1) iprlx 0(1)1 M (4.12)
r= p(r | x, 0 )

=3 r01x i) ( ?E ) L ﬁ(x)) (4.13)

— A0 2 4 10 - 00, @1y

where the last step follows from Y .2, p(r | x, 9(1))7’ = f1(x). A similar for-
mula for u©(x | 2) in equation 4.10 can be obtained with switched subscripts
1 and 2. Thus, equation 4.8 becomes

U (f()l?)f + fulx flgi)
f1(x)

=5 (fl(x) - f2(x))In A"

(4.15)

This is the same as equation 4.3 when the factor 1/2 is ignored.

We now extend our results to arbitrarily many models, with each model
m having a prior probability Py(im) to be the true model. The main idea
is that if model m € {1, ..., M} is true, we want to find the stimulus x
that maximizes the expected increase in the likelihood of model m while
minimizing that for all other models j # m. We choose x to maximize the
expression

Ahy = (Inp(r | x,m)—InpQF | X, ] #m))rjm, (4.16)

where p(r | x, m) = p(r | x, 9(m)) and the notation (-),,, denotes the expec-
tation with respect to » assuming that model m is true, and we define

plr1x, j #m)= ZPOU p(r 1%, j), (4.17)

Z i
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with Z =3, Po(j). Following an argument like that given above for two
models, we can write the utility function for model comparison as

M
O@) =" uOx | m)Py(m), 4.18)

m=1

where

u©(x | m) = Dr [p(r | x, m), p(r | x, j # m)]. (4.19)

This finishes the derivation of the final utility function. For two models (M =
2) with equally likely prior, equations 4.18 and 4.19 reduce to equations 4.8
to 4.10.

4.2.2 Information-Theoretic Utility Function. Now we consider the utility
function for model comparison based on model space entropy, as given by
equation 4.4. For a set of M candidate models, let the probability for model
m=1,..., M to be true be given by Py(m). In a recent study, Cavagnaro
etal. (2010) proposed that one may reduce the uncertainty about the model
by choosing a stimulus x that maximizes the mutual information between
the stimulus and the unknown model m. This criterion may be written as

M

ij o(m)//p(r|x 0)p0(0)1n plm l ) POIXT) )0 4 (4.20)

S pm | 1)
ZPo(m)/ p(r | x, m) Wdr, (4.21)

where the second step obtains because the quantity in the argument of
the logarithm does not depend on 6. Plugging the Bayes’ rule p(m | x,r) =
p(r | x, m)Py(m)/p(r | x) into equation 4.21 yields the final utility function
as in equation 4.4:

M
O =" Po(myu©(x | m), 4.22)

m=1
with

w90 m) = Dia(p(r |, m), p(r | X). (423)
The mutual information model comparison criterion in Table 4 (see
equation 4.23) is analogous to the mutual information estimation criterion

(see Table 2), with the unknown model m taking the place of the unknown
parameter 6.
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4.3 Model Comparison with the BIC. In general, none of the candidate
models considered in an experiment will be identical to the actual underly-
ing process that generates the data. Even the apparently best model will in
general be wrong, a problem known as model misspecification (Burnham
& Anderson, 2002). Therefore, it is sensible to view our method not as
positively identifying the “true” model in the absolute sense, but rather
demonstrating that one model is better than another. In the following, we
evaluate the expected BIC difference and the expected BIC increment per
trial under gaussian noise assumption and verify that in this situation, the
BIC method will generally choose the model closest to the true model in
the sense of least-square error. We show that the theoretical results are
compatible with our numerical simulations using the optimal comparison
stimuli.

Consider two models f; and f,, neither of which is identical to the
unknown true model F, which produces responses with gaussian noise
having fixed variance o so that

r=F(x) +e, (4.24)
where € ~ N(0, 62). Given a data set of n stimuli X, . . ., x, and their elicited
responsesri, ..., I, generated by equation 4.24, we write the BIC for models
f1 and f2 as

1 & ,» Ky

BIC, = —>— ; (ri — fi(a)* — > Inn, (4.25)
1 n 5 K, |

BIC = —— Z; (ri — fo(xi))* — ~ Inn, (4.26)

where K; and K, are the numbers of free parameters in the two models.
Consider

BIC, — BIC; = % > [2ri () = A1) + fi(xi)* = fo(xi)’]
K, _’722 (4.27)

> Inn.

Taking the expectation () of equation 4.28 over the responses generated
by the true model and using the fact that (r;) = F(x;) by equation 4.24, we
obtain

El—E2+K1—K2

B —B =
(BIC, — BICy) 752 5

Inn, (4.28)
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where

Er=Y |Foi)— i), E2=Y  |Fx)— o). (4.29)
i=1 i=1

When f; and f, are of similar complexity, namely, K; ~ K,, whichever of
the two models that has the smaller discrepancy with F as measured by
squared error over all stimuli will be the model preferred by the BIC. When
the two models are of different complexity, the last term in equation 4.28
has the effect of biasing the preference toward the simpler model.

Next, we show how the slope of the differential (BIC, — BIC;) with re-
spect to the number of stimuli is related to how well the candidate models
approximate the true model F (x). After having collected n data points, we
now collect an additional data point (x, #) = (X,+1, 7n+1) for model compar-
ison. It follows from equations 4.28 that the expected increment for this last
data point should be

|F(x) — f1(0)]* — |F(x) — fo(x)|?
202
Ki—Ky, n+1

—1 .
+ 2 nn

(A (BIC, — BIC;)) =
(4.30)

We can ignore the second term when # is large or when the two models have
similar complexity (K; ~ Kj). Ignoring the second term in equation 4.31
and assuming that model 2 is true, namely, F (x) = f2(x), we obtain

- fz(x)|2.

(A (BIC, — BIC))) ~ |f1(X)202 (4.31)

This equation is maximized for the x that best distinguishes the predictions
of models 1 and 2, which is consistent with the utility function equation 4.2
or equation 4.11 as derived earlier.

Applying equation 4.31 to predict the increment A (BIC, — BIC,) for
comparing the additive and multiplicative models in Figure 6b yielded
reasonably good predictions, as we can see from Figure 6e (correlation
coefficient R = 0.59 for 100 trials). Equation 4.31 is justified here because
the two models have almost the same number of parameters (K. = 292 and
K, = 291). For each data point in Figure 6e, the predicted value was based
onequation 4.31, averaged over all 500 stimuli used for each individual trial,
while the observed value was taken as the slope of each red line like those
shown in Figure 6d (right panel). These lines are very close to straight lines
(median correlation coefficient R = 0.9999 for 100 trials). We also applied
equation 4.28 to directly predict the final value of (BIC,. — BIC,) at the end
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of the comparison phase. The result was similar to that in Figure 6e with
correlation coefficient R = 0.58 for 100 trials (not shown).

5 Discussion

With recent advances in computing power, adaptive stimulus generation
has become a potentially powerful tool for sensory neurophysiology (Benda
et al., 2007). Adaptive methods have been applied experimentally to maxi-
mize the firing rate response of a sensory neuron (Harth & Tzanakou, 1974;
Nelken, Pruta, Vaadiaa, & Abeles, 1994; Bleeck, Patterson, & Winter, 2003;
O’Connor, Petkov, & Sutter, 2005; Yamane, Carlson, Bowman, Wang, &
Connor, 2008), to find stimulus ensembles that maximize the mutual infor-
mation between stimuli and responses (Machens, 2002; Machens, Gollisch,
Kolesnikova, & Herz, 2005), and to find stimuli that are optimally designed
to estimate the parameters of some assumed response model (Lewi et al.,
2009). Our study complements previous work on optimal experimental
design for model estimation by considering its application to hierarchical
nonlinear neural models and the problem of online model comparison.

Optimal experimental design methods have been used in various dis-
ciplines including statistics and psychology (Atkinson & Donev, 1992;
Myung, 2000; Pitt, Myung, & Zhang, 2002; Wang & Simoncelli, 2008;
Cavagnaro et al., 2010), but rarely in neuroscience besides the recent ap-
plication to estimating a generalized linear model (Lewi et al., 2009, 2011).
Furthermore, the problem of model comparison has rarely been studied
within sensory systems neuroscience (Vladusich, Lucassen, & Cornelissen,
2006). We have proposed a general two-stage computational procedure for
adaptively generating stimuli online that are optimal for estimating and
distinguishing competing nonlinear models. The method may potentially
facilitate the use of nonlinear mathematical models for quantifying sensory
neurons by reducing the number of stimuli needed in neurophysiological
experiments. Although our demonstration in this letter has been focused
on hierarchical networks, the method may generalize to other input-output
systems as well.

One can uniquely recover the parameters of a neural network correctly
only if the model is identifiable (Bellman & Astrom, 1961; Bamber & van
Santen, 2000); that is, two networks with different parameters need to re-
spond differently to some stimuli. However, even if the two networks have
distinct stimulus-response properties, when a limited set of noisy data is
used for network parameter estimation, as is always the case in practice, we
may still observe a continuum of network parameters giving rise to nearly
identical input-output functionality, making correct identification very dif-
ficult (DiMattina & Zhang, 2010). The adaptive stimulus design approach
may provide a practical method for alleviating the problem of parameter
confounding when estimating the parameters of a nonlinear network.
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We have illustrated the usefulness of our procedure by identifying a
generic center-surround network and a more complicated neuron model
that generates nonlinear responses by integrating responses from multi-
ple linear subunits (see Figure 2), as inspired by some real neurons (Lau
et al., 2002; Prenger et al., 2004; Rust et al., 2005). This model resembles the
spectral-temporal or spatiotemporal receptive fields, but with additional
nonlinear operations downstream. This example uses stimuli with several
hundreds of dimensions, typical of those employed in physiological studies
(Wu et al., 2006).

Previous work has considered the identification of a class of nonlinear
models known as generalized linear models or linear-nonlinear Poisson
(LNP) models by optimal experimental design (Paninski, 2004). Our work
complements these studies by studying the identification of standard non-
linear neural network models (Rumelhart et al., 1986), which are universal
function approximators whose nonlinearity arises entirely from the con-
nectionist network architecture. Such hierarchical models have been shown
to be useful for describing neuronal responses in higher areas of the brain,
like the ventral visual pathway (Riesenhuber & Poggio, 1999; Cadieu et al.,
2007; Hinton, 2010). It would be useful to extend our analysis to include
the additional forms of biological nonlinearity that are incorporated in the
LNP class of models.

One general problem faced by the active data collection methods is
the adaptation of neural responses (Carandini, Heeger, & Senn, 2002;
Ulanovsky, Las, Farkas, & Nelken, 2004; Wehr and Zador, 2005; Asari &
Zador, 2009; David, Mesgarini, Fritz, & Shamma, 2009). For example, one
recent study utilizing a genetic algorithm to optimize neural responses to
three-dimensional visual shapes observed a general decrease in the maxi-
mum neural firing rates as the experiment progressed, most likely due to
repeated presentations of similar stimuli (Yamane et al., 2008). The methods
presented here may potentially be subject to the same limitations caused by
neural adaptation and therefore are likely to be applicable only to a subset
of neurons that do not show strong adaptive effects, at least under some
stimulus conditions. On the other hand, we observe that consecutive stimuli
generated by optimal design often differ from one another (see Figure 1c)
and also tend to drive a neuron over a wide range of firing rate rather than
only toward the maximum firing rate (see Figure 1b). As a consequence, in
the presence of stimulus-specific adaptation, the optimally designed stimuli
might be more robust than adaptive methods that seek to drive a neuron
to its maximum firing rate because in the latter cases, the stimuli might
be restricted to an even smaller region in the stimulus space (Harth &
Tzanakou, 1974; Nelken et al., 1994; Bleeck et al., 2003; O’Connor et al.,
2005). Lewi et al. (2009) have considered some forms of parameter drifts in
their experimental design. For future research, it might be useful to further
develop biologically realistic models of the adaptation processes and take
their effects into account when stimuli are designed.
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In reality, we seldom know the true structure of the underlying net-
work but may have several alternative and competing candidates. We have
shown that stimuli designed to optimally distinguish different models work
better at finding the correct model than both nonadaptive random stimuli
and adaptive stimuli designed for estimation only (see Figure 6). One valid
criticism of this approach is that it is unlikely that the exactly correct model
will be in the set of candidate models, a problem known as model misspec-
ification (Burnham & Anderson, 2002). While this is a general problem of
the system identification approach, we have shown that with well-chosen
data, the BIC procedure will choose the model that is closest to the truth in
a well-defined sense (see section 4.3).

Optimally designed stimuli depend on the mathematical models of the
stimulus-response relationship as well as the actual neuronal responses.
These stimuli cannot be precomputed and have to be generated on the
fly during neurophysiological experiments. For practical applications, the
most time-consuming part of our algorithms is the optimization proce-
dures, which require the evaluation of complicated functions in high-
dimensional spaces. However, when the heuristic methods described in
this letter are used, stimuli of similar complexity to those used in neuro-
physiology experiments (over a 100 stimulus dimensions) can be generated
in about 1 second on a desktop PC (2.4 GHz quad core), showing that our
method is already within the timescale of feasible neurophysiological ex-
periments. As the power of computers keeps increasing, adaptive stimulus
generation may eventually become a standard method in systems neuro-
science for estimating and comparing ever more complex models in online
experiments.
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