Kevin L. Erwin CE PWS Kevin L. Erwin Consulting Ecologist, Inc. 2077 Bayside Parkway Ft. Myers, Florida 33901 USA The Lee County DR/GR: Implications for future restoration and management

> Estero Bay Watershed Public Symposium Florida Gulf Coast University

> > September 2009

There is great potential for restoring and sustainably managing wetland and water resources combining wetland management, sustainable agriculture and phased wetland restoration in the midst of a changing global climate.

Recommendations

- Prepare a hydrological model of the study area which includes estimated watershed boundaries.
- Implement a comprehensive long-term surface and groundwater monitoring network that includes; shallow wells, deep wells, staff, flow and rain gauges.
- Develop and refine water budgets for each watershed in the DR/GR and conduct a comparative analysis with the estimated historical conditions.
- Develop detailed restoration plans for each watershed.
- Initiate discussions with agricultural interests on sustainable agriculture, habitat management and restoration objectives.

Recommendations

- Conduct limited ground-truthing to improve the accuracy of the existing conditions desktop mapping.
- ✓ Obtain accurate topography for the study area.
- Maintain and improve existing policy regulations requiring site and project specific hydrological data collection and analysis, including surface and groundwater monitoring, water budget, and water quality monitoring.
- Develop a working agreement with Collier County on land and water resource management on lands within watersheds shared by Collier and Lee Counties.

Why is the DR/GR important to Estero Bay?

Questions

- 1. What was the DR/GR like prior to recent alterations? What types of habitats had been predominant and what were the surface hydrologic characteristics (hydropatterns)?
- 2. What is the nature and extent of existing land uses, habitat types, location and conditions of remaining wetlands (hydropatterns), agricultural lands, and watersheds?
- 3. How wet was the DR/GR then and now and what is the extent of wetland loss?

Questions

- 4. What proportion of converted wetlands remains in agricultural use?
- 5. What are the similarities between wetlands and agricultural lands in the DR/GR?
- 6. What is the potential for restoring and sustainably managing these resources?

DR/GR Study Area Existing Conditions

Image U.S. Geological Survey Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2009 TerraMetrics

Imagery Dates: 2005 - Mar 2008

26"28'16.10" N 81°47'24.19" W

2009 GOO

Eye alt 31.06

DR/GR Study Area Current Hydropatterns

DR/GR Study Area Major Land Use Categories Existing Conditions

LEVEL I FLUCFCS CATEGORY	CORKSCREW	ESTERO RIVER	FLINT PEN	IMPERIAL RIVER	SIX MILE CYPRESS	TOTAL
100 - Urban and Built-up	1,033.2	4,939.2	1,298.7	43.8	129.9	7,444.8
200 – Agriculture	11,543.7	4,830.5	8,711.6	194.7	398.0	25,678.5
300 – Rangeland	123.8	417.5	389.1	11.3	9.5	951.2
400 - Upland Forests	462.1	1,499.4	1,544.1	111.6	174.1	3,791.3
500 - Water	147.6	46.6	244.0	3.1	2.3	443.6
600 - Wetlands	6,581.1	10,790.0	22,490.8	1,604.0	1,075.7	42,541.6
700 - Barren Land	194.3	687.1	286.7	23.4	18.8	1,210.3
800 - Transportation, Communication, and Utilities	169.3	356.4	207.3	17.7	66.7	817.4
GRAND TOTAL	20,255.1	23,566.7	35,172.3	2,009.6	1,875.0	82,878.7

Summary of the Correlation Between Various Land Use Coding Systems and the Hydropatterns in the DR/GR

KLECE Codes (1953)	MIKE SHE Codes	FLUCFCS Codes (2007)	Depth	Hydroperiod	Map Index Color
1, 1M, 1P, 2D	17, 16	621, 641	1.5'-2.5'	7-9 Mos	Dark Blue
25	18	610, 617, 619	0.75'-1.5'	4-7 Mos	Medium Blue
3	14, 13	262, 630, 631, 643, 624,628	0.25'-0.75'	1-3 Mos	Medium Light Blue
4	10, 12	625	-0.5'-0.25'	1-2 Mos	Light Blue

DR/GR Study Area Historical Hydropatterns

Estimated Acreages of Major Wetland Habitats within the DR/GR in 1953 and 2007

1953		20	Loss (in acres)	
Habitat Type	Acreage	FLUCFCS Code	Acreage	
Marsh, Ponds, Deep Swamp	36,258.1	610, 617, 619, 621, 641	14,981.1	(21,277)/58.7%
Shallow Cypress	10,598.3	624, 628, 630, 631	16,260.0	5661.7/53%
Hydric Pine	24,112.9	625, 643	11,300.4	(12,812.5)/53.1 %
Total	70,969.3		42,541.5	28,427.8/40%

DR/GR Study Area Historical Wetlands Converted to Agriculture

Historic water level

Drained wetland in eastern Ontario

Restoring wetlands in Florida +50 years after conversion to Agriculture

DR/GR Study Area Historical Wetlands Converted to Agriculture

DR/GR Study Area Priority I, II, and III Restoration Plan

Restoration Recommendation and the Historical Hydropatterns

1953		20	Loss (in acres)	
Habitat Type	Acreage	FLUCFCS Code	Acreage	
1M, 1P, 2D, 2S	36,258.1	610, 617, 619, 621, 641	14,981.1	(21,277)/58.7%
3	10,598.3	624, 628, 630, 631	16,260.0	5661.7/53%
4	24,112.9	625, 643	11,300.4	(12,812.5)/53.1%
Total	70,969.3		42,541.5	28,427.8/40%

LEVEL I FLUCFCS CATEGORY	CORKSCREW	ESTERO RIVER	FLINT PEN	IMPERIAL RIVER	SIX MILE CYPRESS	TOTAL
200 – Agriculture	11,543.7	4,830.5	8,711.6	194.7	398.0	25,678.5
300 – Rangeland	123.8	417.5	389.1	11.3	9.5	951.2
400 - Upland Forests	462.1	1,499.4	1,544.1	111.6	174.1	3,791.3
500 - Water	147.6	46.6	244.0	3.1	2.3	443.6
600 - Wetlands	6,581.1	10,790.0	22,490.8	1,604.0	1,075.7	42,541.6
GRAND TOTAL	20,255.1	23,566.7	35,172.3	2,009.6	1,875.0	82,878.7

Image U.S. Geological Survey

Eye alt 1481

02009 GOO

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2009 Cnes/Spot Image Image © 2009 TerraMetrics Image © 2009 DigitalGlobe 12°48'12.44" N 11°46'16.19" W

Senegal.

02009 GOO

Eye alt 2275.10

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2009 TerraMetrics © 2009 Cnes/Spot Image Image © 2009 DigitalGlobe 12°41'16.17" N 15°32'11.28" W

Casamance

2009 GO

Eye alt 297