\[\lim_{x \to 0} \frac{\tan x}{x} \]

Note

\[\lim_{x \to 0} \tan x = 0 \]
\[\lim_{x \to 0} x = 0 \]

So we have \(\frac{0}{0} \), indeterminate.

\[= \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{(\cos x) \cdot x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \]

\[= \left(\lim_{x \to 0} \frac{\sin x}{x} \right) \left(\lim_{x \to 0} \frac{1}{\cos x} \right) = \left(1 \right) \left(\frac{\lim_{x \to 0} 1}{\lim_{x \to 0} \cos x} \right) \]

\[= \left(1 \right) \left(\frac{1}{\cos 0} \right) = \left(1 \right) \left(\frac{1}{1} \right) = 1 \]

\[\lim_{x \to 0} \left(e^{-x} \sin(\pi x) \right) = \left(\lim_{x \to 0} e^{-x} \right) \left(\lim_{x \to 0} \sin(\pi x) \right) \]

\[= \left(1 \right) \left(\sin \left(\lim_{x \to 0} \pi x \right) \right) = \left(1 \right) \left(\sin(0) \right) = \left(1 \right) \left(0 \right) = 0 \]

Try following at home:

1) \[\lim_{x \to -1} \frac{(2x-3)(x+1)}{x+1} \]

2) \[\lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x} \]

3) \[\lim_{x \to 0} \frac{\sin(x)(1-\cos x)}{2x^2} \]

4) \[\lim_{x \to 1^-} \frac{x^2 + 2x - 3}{|x-1|} \]
\[f(x) = \frac{x+1}{x^2 - 2x - 3} \]

Find:

a) \(\lim_{x \to 3^-} f(x) \)

b) \(\lim_{x \to 3^+} f(x) \)

c) \(\lim_{x \to 3} f(x) \)

We can write:

\[f(x) = \frac{x+1}{(x+1)(x-3)} = \frac{1}{x-3} \]

\[\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \frac{1}{x-3} = -\infty \]

\[\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \frac{1}{x-3} = \infty \]

\[\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{1}{x-3} = \text{DNE} \]

\[\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x+1}{(x+1)(x-3)} = \lim_{x \to -1} \frac{1}{x-3} = \frac{-1}{4} \]
Squeeze theorem

If \(f(x) \leq g(x) \leq h(x) \) when \(x \) is near \(c \) (except possibly at \(c \)) and

\[
\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L
\]

then

Example

If \(2x - 1 \leq f(x) \leq x^2 - 2x + 3 \) for \(x > 0 \), find \(\lim_{x \to 2} f(x) \).

\[
\lim_{x \to 2} 2x - 1 = 3
\]

\[
\lim_{x \to 2} x^2 - 2x + 3 = 2^2 - 2 \cdot 2 + 3 = 3
\]

From squeeze theorem

\[
\lim_{x \to 2} f(x) = 3
\]
2.4 Precise definition of limits

We learnt (17) limit laws, but do we derive those rules.

\[\lim_{x \to 0} \frac{\sin x}{x} = 1 \]
how do we know it is exactly 1?

Definition

Let \(f \) be a function defined on some open interval that contains the number \(a \), except possibly at \(a \) itself.

Then we say that the limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \), and we write

\[\lim_{x \to a} f(x) = L \]

For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

if \(0 < |x - a| < \delta \) then \(|f(x) - L| < \varepsilon \)

\[\lim_{x \to 2} x^2 = 4 \]

How small the \(\varepsilon \) is, we should be able to find an open interval which includes 2 in it.
\[\lim_{x \to 2} f(x) \]

\[\lim_{x \to 2} f(x) = 4 \quad ? \]

Every \(\varepsilon > 0 \) will not lead to an open interval that contains 2.

i.e. \(\lim_{x \to 2} f(x) \neq 4 \).

Example:

Use the graph to find \(\delta > 0 \) such that for all \(x \),

\[0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon \]

when \(f(x) = \sqrt{x - 2} \) , \(x_0 = 4 \) , \(L = \sqrt{2} \) , \(\varepsilon = \frac{1}{4} \)

\[\sqrt{2} - \frac{1}{4} = \sqrt{x - 2} \]

\[(\sqrt{2} - \frac{1}{4})^2 = x - 2 \]

\[x = (\sqrt{2} - \frac{1}{4})^2 + 2 \approx 3.3554 \]
To find b

\[
\sqrt{2} + \frac{1}{4} = \sqrt{x - 2}
\]

\[
x = (\sqrt{2} + \frac{1}{4})^2 + 2 \approx 4.7696
\]

So $b = 0.6446$