\[\lim_{x \to 3^+} \frac{x}{x^2 - 9} \to 0^+ \]
\[\lim_{x \to 3^-} \ln \left[\frac{x^2}{3-x} \right] \to -\infty \]

2.5 **Continuity at a point**

If a function \(f(x) \) is continuous at point \('c' \) then

\[\lim_{x \to c} f(x) = f(c) \]

i.e. The left limit and right limit at \('c' \) should be equal to function value at \('c' \)

Above functions are not continuous at \(x = c \). But they are removable discontinuities.
Jump discontinuity

Above, is not continuous at $x = c$. These are non-removable discontinuities.

One-sided limits

Right limit $\neq f(c)$

So $f(x)$ is not right continuous at $x = c$.

Since $\lim_{x \to c^-} f(x) = f(c)$

$f(x)$ is left continuous at $x = c$.
\[f(x) = \begin{cases}
1 & x < -1 \\
3 & x = -1 \\
x + 2 & -1 < x \leq 0 \\
e^x & 0 < x
\end{cases} \]

At \(x = -1 \):

\[
\lim_{x \to -1} f(x) = 1 \neq f(-1)
\]

So \(f(x) \) is not continuous at \(x = -1 \). \(x = -1 \) is a removable discontinuity.

At \(x = 0 \):

\[
\lim_{x \to 0} f(x) = \text{DNE}
\]

So \(f(x) \) is not continuous at \(x = 0 \). \(x = 0 \) is a non-removable discontinuity.
Continuity on a closed interval.

A function \(f \) is continuous on a closed interval \([a, b]\) if it is continuous on the open interval \((a, b)\) and

\[
\lim_{{x \to a^+}} f(x) = \lim_{{x \to b^-}} f(x) = \]

Continuity at point \(c \) is destroyed when:
- function is not defined at \(x = c \)
- limit does not exist at \(x = c \)
- limit is not equal to function value at \(x = c \).

8. Discuss the continuity of \(f(x) = \frac{1}{x} \).

\[
\lim_{{x \to c}} f(x) = \lim_{{x \to c}} \frac{1}{x} = \frac{1}{c} = f(c) \quad , \quad c \neq 0
\]

\[
\lim_{{x \to c}} f(x) = f(c) \quad , \quad c \neq 0
\]

So \(f(x) \) is continuous everywhere except possibly for \(x = 0 \).
Since \(\lim_{x \to 0^+} \frac{1}{x} = \infty \) and \(\lim_{x \to 0^-} \frac{1}{x} = -\infty \)

\[\lim_{x \to 0} f(x) = \text{DNE} \]

i.e. \(f(x) \) is not continuous at \(x=0 \).

Example: Discuss the continuity of \(f(x) = \frac{x^2-1}{x-1} \)

\[\lim_{x \to c} f(x) = \lim_{x \to c} \frac{x^2-1}{x-1} = \frac{c^2-1}{c-1} = f(c) \quad c \neq 1 \]

\[\lim_{x \to c} f(x) = f(c) \quad c \neq 1 \]

So \(f(x) \) is continuous everywhere except possibly at \(x=1 \).

At \(x=1 \)

\[\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2-1}{x-1} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x-1)} = 2 \]

\[f(1) = \frac{1^2-1}{1-1} = \text{und} \]

\(f(x) \) is not continuous at \(x=1 \). But \(x=1 \) is a removable discontinuity.
9. Find the continuity of \(f(x) = \sqrt{1 - x^2} \).

Note: Domain of \(f(x) \) is \([-1, 1]\)

When \(c \in (-1, 1) \)

\[
\lim_{x \to c} f(x) = \lim_{x \to c} \sqrt{1 - x^2} = \sqrt{\lim_{x \to c} (1 - x^2)} = \sqrt{1 - c^2} = f(c)
\]

\[
\lim_{x \to c} f(x) = f(c)
\]

\(f(x) \) is continuous on \((-1, 1)\).

At \(x = -1 \)

\[
\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \sqrt{1 - x^2} = \sqrt{\lim_{x \to -1^+} 1 - x^2} = \sqrt{1 - (-1)^2} = 0
\]

\[
= f(c) \quad f(-1)
\]

\(f(x) \) is right continuous at \(x = -1 \)

At \(x = 1 \)

\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \sqrt{1 - x^2} = \sqrt{\lim_{x \to 1^-} (1 - x^2)} = \sqrt{1 - (1)^2} = 0
\]

\[
= f(1)
\]

\(f(x) \) is left continuous at \(x = 1 \)

\(f(x) \) is continuous on closed interval \([-1, 1]\)
Vertical asymptotes

The line $x = c$ is called a vertical asymptote of the curve $f(x)$ if

$$\lim_{x \to c^-} f(x) = \pm \infty \quad \text{and/or} \quad \lim_{x \to c^+} f(x) = \pm \infty$$

Q Find vertical asymptote of $f(x) = \frac{x^2 + 1}{x^2 - 1}$

Since denominator becomes zero at $x = 1$ and $x = -1$ we suspect vertical asymptotes at $x = 1$ and $x = -1$.

At $x = 1$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + 1}{x^2 - 1} = \pm \infty$$

So $x = 1$ is a vertical asymptote.

At $x = -1$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 + 1}{x^2 - 1} = \pm \infty$$

So $x = -1$ is a vertical asymptote.
8. Find vertical asymptote \(f(x) = \frac{x}{\sin x} \)

Denominator becomes zero at \(x = 0, \pm \pi, \pm 2\pi, \ldots, \pm n\pi \)

At \(x = 0 \)

\[
\lim_{x \to 0} \frac{x}{\sin x} = \lim_{x \to 0} \frac{1}{\frac{\sin x}{x}} = \frac{1}{1} = 1
\]

So \(x = 0 \) is not a vertical asymptote. It is a removable discontinuity.

At \(x = \pm n\pi, n \neq 0 \)

\[
\lim_{x \to \pm n\pi} \frac{x}{\sin x} = \lim_{x \to \pm n\pi} \frac{\pm n\pi}{\sin \pm n\pi} = \pm \infty
\]

So \(x = \pm n\pi, n \neq 0 \) are vertical asymptotes.

Horizontal Asymptotes

The line \(y = L \) is called a horizontal asymptote of the curve \(y = f(x) \) if either

\[
\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L
\]
\[\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = \lim_{x \to \infty} \frac{(x^2 - 1)/x^2}{(x^2 + 1)/x^2} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x^2}} = 0 \]

So \(y = 0 \) is a horizontal asymptote.

\[\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 + 1} = \lim_{x \to -\infty} \frac{(x^2 - 1)/x^2}{(x^2 + 1)/x^2} = \lim_{x \to -\infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x^2}} = 0 \]

So \(y = 0 \) is a horizontal asymptote.

\[\text{Eg find horizontal asymptote of } f(x) = \frac{3x^2 - \sqrt{x-2}}{5x^2 + 4x + 1} \]

\[\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3x^2 - \sqrt{x-2}}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{(3x^2 - \sqrt{x-2})/x^2}{(5x^2 + 4x + 1)/x^2} \]

\[= \lim_{x \to \infty} \frac{3 - \sqrt{\frac{x-2}{x^4}}}{5 + \frac{4}{x} + \frac{1}{x^2}} = \lim_{x \to \infty} \frac{3 - \sqrt{\frac{1}{x^3} - \frac{3}{x^4}}}{5 + \frac{4}{x} + \frac{1}{x^2}} = \frac{3}{5} \]

So \(y = 3/5 \) is horizontal asymptote.

Note \(\lim_{x \to -\infty} f(x) \) will produce the same horizontal asymptote.