3.10 Linear approximation and differentials

Here we obtain a linear approximation for a complicated function \(y = f(x) \).

Equation of tangent line:

\[
y - y_0 = m(x - x_0).
\]

\[
y - f(a) = f'(a)(x-a)
\]

\[
y = f(a) + f'(a)(x-a)
\]

\[
L(x) = f(a) + f'(a)(x-a)
\]

linear approx of \(f(x) \) at \(x=a \)
(a) Find the linear approx of \(y = \sqrt{x+3} \) at \(x = 1 \).

Slope of tangent
\[
y'(x) = \frac{1}{2} (x+3)^{-1/2} = \frac{1}{2 \sqrt{x+3}}
\]

Slope at \(x = 1 \)
\[
y'(1) = \frac{1}{2 \sqrt{4+3}} = \frac{1}{2 \cdot 4} = \frac{1}{4}
\]

Point on tangent
\[
y(1) = \sqrt{1+3} = \sqrt{4} = 2
\]

Eqn of tangent
\[
y - 2 = \frac{1}{4} (x-1)
\]

\[
y - 2 = \frac{x}{4} - \frac{1}{4}
\]

\[
y = \frac{x}{4} - \frac{1}{4} + \frac{2}{4}
\]

\[
y = \frac{x}{4} + \frac{1}{4}
\]

\[
L(x) = \frac{x}{4} + \frac{1}{4}
\]

(b) Approximate \(\sqrt{3.98} \)

View line \(\sqrt{3.98} = \sqrt{0.98+3} \). To approximate, we will use linear approx at \(x = 0.98 \)

\[
L(0.98) = \frac{0.98}{4} + \frac{1}{4} \approx 1.995
\]

Note: Actual value is 1.999
Differentials

\[y = f(x) \]

\[\Delta y \quad \text{dy - differential} \]
\[\Delta y \quad \text{Actual change in } y \text{ due to } \Delta x \text{ change in } x \]

Differential

\[dy = f'(x_0) \Delta x \]

If \(\Delta x \) is very small, \(\Delta y \approx dy \)

\[f'(x) = x^3 + x^2 - 2x + 1 \]

\[f'(x) = 3x^2 + 2x - 2 \]
\[f'(2) = 3 \cdot 2^2 + 2 \cdot 2 - 3 = 14. \]

So differential.

\[dy = f'(x_0) \Delta x \]
\[dy = 14 \cdot \Delta x. \]

(6) Approximate the change in \(y \), if \(x \) changes from \(x = 2 \) to \(x = 2.01 \).

\[\Delta x = 2.01 - 2 = 0.01. \]

This is a very small change.

Since \(\Delta x \) is small, \(\Delta y \approx dy \)

but \[dy = 14 \cdot (0.01) = 0.14 \]

So \[\Delta y \approx 0.14. \]
Eq. The radius of a sphere was measured and found, 21 cm with a possible error in measurement of at most \(\pm 0.05 \text{ cm} \).

What is the max error in using this value of radius to compute the volume of the sphere. Also find the relative error.

Eq. between \(V \) and \(r \) is

\[
V = \frac{4}{3} \pi r^3.
\]

Let us find differential.

\[
dV = \left[\text{derivative of volume at } r=21 \right] \cdot \Delta r
\]

\[
= \left[\frac{4\pi}{3} r^2 \text{ at } r=21 \right] \cdot \Delta r
\]

\[
= \left[4\pi (21)^2 \right] \Delta r.
\]

Since change in radius is at most \(\Delta r = \pm 0.05 \)

\[
dV = 4\pi (21)^2 (\pm 0.05)
\]

\[
= \pm 277 \text{ cm}^3.
\]

Max error in volume is 277 cm\(^3\).

Relative error: \[
\frac{\Delta V}{V} \text{ actual change } \quad \frac{dV}{V} \text{ nominal volume}
\]

Since \(\Delta r \) is very small, \(\Delta V \approx dV \)

So Relative error \(= \frac{\Delta V}{V} \approx \frac{dV}{V} = \frac{277}{\frac{4\pi (21)^3}{3}} = 0.007 \)

\(0.7\% \).