Using right angle triangle

\[x^2 = (12-12t)^2 + (6t)^2 \]

\[x = \sqrt{(12-12t)^2 + (6t)^2} \]

\[= \sqrt{144t^2 - 288t + 144} \]

Did ships ever sight each other?

To answer this question we need to find the minimum of \(x \).

\[x = \frac{1}{2}(180t^2 - 288t + 144) \]

\[= \frac{360t - 288}{2 \sqrt{180t^2 - 288t + 144}} \]

\[= \frac{72(5t-4)}{2 \sqrt{36(5t^2 - 8t + 4)}} \]

\[= \frac{72(5t-4)}{12 \sqrt{5t^2 - 8t + 4}} \]

\[= \frac{6(5t-4)}{\sqrt{5t^2 - 8t + 4}} \]

End of number

\[\gamma = 0 \]

\[\frac{6(5t-4)}{\sqrt{5t^2 - 8t + 4}} = 0 \]

\[5t-4 = 0 \]

\[t = 4/5 \text{ hours} \]

Since \(\gamma \) increases as \(t \to \infty \), \(t = 4/5 \) will produce the minimum \(x \) value.

\[x = \sqrt{180(\frac{4}{5})^2 - 288(\frac{4}{5}) + 144} \]

\[= \frac{12}{\sqrt{5}} \approx 5.36 \text{ knots} \]

This is the closest distance between 2 ships, and consequently the 2 ships did not sight each other.

Volume of box \(= (50-2x)^2 \cdot x \)

\[V = x(50-2x)^2 \]

to find maximum volume

\[V = 4x^3 - 200x^2 + 2500x \]

\[V' = 12x^2 - 400x + 2500 \]
Conditional number

\[y^1 = 0 \]
\[12x^2 - 400x - 2500 = 0 \]
\[4(3x+25)(x-25) = 0 \]
\[x = \frac{25}{3}, \quad x = 25 \]

Let us find rel max and min

\[V''(x) = 24x - 400 \]
\[V''\left(\frac{25}{3}\right) = 24\left(\frac{25}{3}\right) - 400 < 0 \]
\[V''(25) = 24(25) - 400 > 0 \]

So \(x = \frac{25}{3} \) is the absolute max

Volume at \(x = \frac{25}{3} \) is

\[V\left(\frac{25}{3}\right) = \left(\frac{25}{3}\right)\left(50 - 2\cdot\frac{25}{3}\right)^2 \]
\[= \frac{250000}{27} \approx 9259.3 \]

So dimensions are

![Diagram of a box with dimensions](image)

3. \(c(x) = x^3 - 22x^2 + 20000x \)

Average cost

\[A(x) = \frac{c(x)}{x} \]
\[= x^2 - 22x + 20000 \]

Critical points of \(A(x) \)

\[A'(x) = 2x - 22 \]
\[0 = 2x - 22 \]
\[0 = 2(x-11) \]
\[x = 11 \]

Show \(x = 11 \) is rel min

\[A''(11) = 2 > 0 \]

So \(x = 11 \) is the abs min.

4. $7/ft^3$

\[\$8/ft^4 \]

Note \(xy = 760 \)

So \(y = \frac{760}{x} \)

Cost

\[c(x,y) = 2x(7) + 2y(8) \]
\[= 14x + 16y \]

but \(y = \frac{760}{x} \)

So \(c(x) = 14x + 16\cdot\frac{760}{x} \)
\[= 14x + \frac{12160}{x} \]
to find ordinal points
\[C'(x) = 14 - \frac{12160}{x^2} \]
\[0 = 14 - \frac{12160}{x^2} \]
\[x^2 = \frac{12160}{14} \approx 868.57 \]
\[x = 29.47. \]
To show this is rel min
\[C''(x) = \frac{2(12160)}{x^3} \]
\[C''(29.47) = \frac{2(12160)}{(29.47)} > 0 \]
So \(x = 29.47 \) is absolute min

So \(y = \frac{760}{x} = \frac{760}{29.47} = 25.79 \)

\[
\begin{array}{c}
25.79 \\
29.47
\end{array}
\]

\[
\begin{array}{c}
\text{5) } \\
x \\
y \\
x \\
y
\end{array}
\]

Find radius of cylinder
\[2\pi r = x \]
\[r = \frac{x}{2\pi} \]

Volume of cylinder
\[V(x,y) = \pi r^2 h \]
\[V(x) = \pi \left(\frac{x}{2\pi} \right)^2 (33-2x) \]
\[= \frac{x^2}{8\pi} (33-2x) \]

to find ordinal points
\[V(x) = 33x^2 - 2x^3 \]
\[\frac{\delta}{8\pi} \]
\[V'(x) = 66x - 6x^2 \]
\[\frac{\delta}{8\pi} \]
\[0 = \frac{6x(11-x)}{8\pi} \]
\[x = 0, \ x = 11 \]
\[x = 0 \text{ is not a possible answer.} \]
\[x = 11 \text{ produce a max} \]
\[V''(11) = \frac{66 - 12 \times 11}{8\pi} \]
\[< 0 \]
So \(x = 11 \) is abs max
So \(y = \frac{33-2(11)}{2} = \frac{11}{2} \text{ cm} \)
Earth

\[q_6 = y + (4x) \]
\[y = q_6 - 4x \]

Volume

\[V(x,y) = x^2y \]
\[V(x) = x^2(q_6 - 4x) \]

Find critical points

\[V(x) = 96x^2 - 4x^3 \]
\[V'(x) = 192x - 12x^2 \]
\[0 = 192x - 12x^2 \]
\[0 = 12x(16 - x) \]
\[x = 0 \quad \text{and} \quad x = 16 \]

\[x = 0 \] is not possible.
Show \(x = 16 \) gives a local max

\[V''(x) = 192 - 24x \]
\[V''(16) = 192 - 24(16) < 0 \]

So \(x = 16 \) is abs max
So \(y = q_6 - 4(16) = 32 \)

Dimensions are
16 in \times 16 \text{ in} \times 32 \text{ in}

Using similar \(\triangle s \)

\[\frac{y}{x+30} = \frac{9}{x} \]

\[y = \frac{9}{x} (x + 30) \]

Using right angle triangle

\[z^2 = (x+30)^2 + (y)^2 \]
\[= (x+30)^2 + \left(\frac{9}{x} (x+30) \right)^2 \]

Let \(D = z^2 \). Note when \(D^2 \) is minimum \(z^2 \) will be minimum

\[D(x) = (x+30)^2 + 81 \left(1 + \frac{30}{x} \right)^2 \]

\[D'(x) = 2(x+30) + 162 \left(1 + \frac{30}{x} \right) \left(-\frac{30}{x^2} \right) = 0 \]

\[x^3(x+30) - 2430(x+30) = 0 \]
\[(x^3 - 2430)(x+30) = 0 \]
\[x = -30 \quad \text{or} \quad x = \sqrt[3]{2430} = 13.444 \]

Note when \(x \to \infty \), \(z \to \infty \)
So \(x = 13.444 \) is the abs min.
Smallest value of r

$$z^2 = (x+30)^2 + \left[\frac{9}{x}(x+30)\right]^2$$

$$z = \sqrt{(x+30)^2 + \left[\frac{9}{x}(x+30)\right]^2}$$

$$= \sqrt{(13.444+30)^2 + \left[\frac{9}{1.444}(13.444+30)\right]^2} \approx 52.2802$$
So shortest length occurs when
\[z = D^2 = (13.276)^2 = 52.2827 \text{ ft} \]

Using right angle triangle.

\[10^2 = w^2 + d^2 \]

Stiffness
\[w = \sqrt{100 - d^2} \]

So
\[S(w,d) = wd^3 \]

\[S(d) = \sqrt{100 - d^2} d^3 \]

to find critical points.

\[S'(d) = \frac{\sqrt{100 - d^2}(3d^2) + d^3 - 2d}{2\sqrt{100 - d^2}} \]

\[0 = \sqrt{100 - d^2}(3d^2) - d^4 \]

\[0 = (100 - d^2)(3d^2) - d^4 \]

\[0 = d^2 [3(100 - d^2) - d^2] \]

\[0 = d^2 [300 - 4d^2] \]

\[d = 0 \text{ or } 4d^2 = 300 \]

\[d = \pm 8.66 \]

But \(d = 0 \) and \(d = -8.66 \) are not possible

Show \(d = 8.66 \) is a rel max

\[S'(d) = \frac{4d (3d^4 - 475d^2 + 15000)}{(100 - d^2)^{3/2}} \]

\[S''(8.66) = \frac{4(8.66)^2 [3(8.66)^2 - 475(8.66) + 15000]}{(100 - 8.66^2)^{3/2}} \]

So \(d = 8.66 \) is abs max

So \(w = \sqrt{100 - (8.66)^2} = 5.0 \text{ in} \)

\[\text{Fig. 8-7} \]