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The Motivation

Our goal is to maximize the present value of a fishery which may harvest multiple

interacting species. To do so, use the traditional present value integral

PV =

∫∞
0

R(t) · e−δtdt

Let q denote the catchability of a species in [vessel· day]−1, E the effort in [vessels],
and h(t) the harvesting function

h(t) = qEx(t)

Along with the unit selling price p and cost per unit of effort c, the instantaneous

net profit is

R(t) = ph(t) − cE

Writing the Present Value integral in terms of harvesting gives

PV =

∫∞
0

e−δt(pqx(t)E − cE)dt

The question, then, is: How does one determine the optimal fishing effort so as to

maximize value?

Population Dynamics with Harvesting

Before tackling the PV integral, one must determine the population dynamics for

the species involved. The requisite dynamics will be constructed in stages:
First, recall the Logistic growth model for a species x:

ẋ(t) = x
(

r −
r
k

x
)

where

I x(t)= the stock level at time t [tonnes]
I r= intrinsic growth rate [time]−1

I k= carrying capacity [tonnes]
Letting subscripts denote each species and adding interaction terms gives rise

to the familiar Lotka-Volterra predator-prey model{
ẋ1(t) = x1(r1 −

r1
k1

x1 − α1x2)

ẋ2(t) = x2(r2 −
r2
k2

x2 − α2x1)

Next, a stress term φA (predetermined and assumed constant) is added for each

species. The net effect of ecological stress is to shift equilibrium points in the

negative direction (which may result in overfishing if unaccounted for).
In the final stage, harvesting (recall h(t) = qEx(t)) is added to our system. The

resulting population dynamics are then determined by the equations

ẋi = xi

ri −

n∑
j=1

αijxj − φiAi − qiE

 ; 1 6 i 6 n

I A subscript i denotes a term for the ith of n species

I αij is the interaction between the ith and jth species

Phase Planes of a Harvested 2x2 System

Figure: Sample trajectories for u = 0 (Left); u = us (Middle); and u = 1 (Right)

Determining an Optimal Control Policy

The economic question may be formulated as an equivalent optimal control problem

maximize J[~x(t), u(t)] =
∫∞

0
e−t(~µ ·~x(t) − 1)u(t) dt; ~x(t) = (x1(t), ..., xn(t))

Subject to: ẋi = xiFi(x1, ..., xn) − γixiu; xi(t) ∈ [0, 1]; u(t) ∈ [0, 1]

Define the Hamiltonian as

H(x1, ..., xn, λ1, ..., λn, u, t) = ue−t

(
n∑

i=1

[µixi] − 1

)
+

n∑
i=1

λiẋi

Pontryagin’s Maxmimum Principle states that the optimal trajectories x∗i and

control u∗, along with the corresponding Lagrange multipliers λ∗i , maximize H.
Symbolically

I

H(x∗1, ..., x∗n, λ∗1, ..., λ∗n, u∗, t) > H(x1, ..., xn, λ1, ..., λn, u, t) ∀ t and ∀ u ∈ [0, 1]

I

dλi

dt
= −

∂H
∂xi

Substituting ẋi into H and rewriting shows that the Hamiltonian is linear in the

control u:

H(...) =
n∑

i=1

[λixiFi] + u ·ϕ; ϕ
def
=

n∑
i=1

[e−tµixi − γiλixi − 1]

Since u∗ must maximize H, it is easy to see that we may define the control function

implicitly as follows:

u∗ =


0 if ϕ(t) < 0
us(t) if ϕ(t) ≡ 0
1 if ϕ(t) > 0

An explicit function for u∗ is an arduous task but can be found by following the

method of solution provided.

Method of Solution

To provide an answer to our economic problem we must first

I Determine necessary and sufficient conditions via the Maximum Principle

I Eliminate costate variables (λ ′i s)
I Determine the switching function us(t) for the singular path ϕ ≡ 0

I The previous two steps make use of ϕ ′ = ϕ ′′ = ... = ϕ(n) = 0

I Come to terms with the monster thus created

Harvesting a Predator-Prey System

To illustrate the policy, consider two species x and y with the following dynamics:

ẋ = x (r1 − α11x − α12y − φ1A1 − q1E)
ẏ = y (r2 + α21x − α22y − φ2A2 − q2E)

Using the figure provided to analyze the phase planes, notice that

I Before harvesting (left)→ u = 0: Trajectories spawn from (0, 0) toward (1, 1)
I Full harvesting (right)→ u = 1: Trajectories spawn from (1, 1) toward (0, 0)
I The switching function us (middle) creates a ’region of equilibirum’ (observe

around (0.1,0.8) ) above which neither species is driven toward extinction and the

fishery is proiftable

Economic equilibria must be determined so that an optimal trajectory can be

stitched together from each phase portrait. For example:
with initial stock levels of (0.05,0.1) the fishery must wait (u = 0) until the

population of species two has increased sufficiently before applying an investment

pulse (u = 1). Since maintaining maximum effort would lead to overfishing (and

yield zero revenue), the switching function us must be used to attain an equilibrium

that is ecologically and economically sound.
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