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Abstract

Whereas the spectrum of a normal matrix determines its behavior, the pseudospectrum offers
an alternative to better understand the behavior of matrices that are nonnormal. In this study,
we investigate the relationship between pseudospectra and matrix behavior. In particular,
we investigate the implications of matrices with equal spectral norm pseudospectra.

Notation/Definitions

Throughout,Mn denotes the set of n-by-n matrices with complex entries and Λ(A) denotes
the set of eigenvalues of A ∈Mn.

ε-pseudospectra

For A ∈Mn and ε > 0, the ε-pseudospectrum of A is defined by

Λε(A) = {z ∈ C : ||(zI − A)−1|| > ε−1}

Spectral Norm

For A ∈Mn, the spectral norm of A is defined by

||A|| =
√
λmax

where λmax is the largest number λ such that A∗A − λI is singular.

Minimal and Characteristic Polynomials

For A ∈ Mn, the minimal polynomial of A, denoted by mA, is the monic polynomial of
minimal degree so that mA(A) = 0. The characteristic polynomial of A, denoted by χA,
in variable λ, is the determinant of (A − λI) where I is the identity matrix in Mn. It is
well-known that the minimal and characteristic polynomials have the same zeros.

Background

In [1], Greenbaum and Trefethen showed that square matrices with equal spectral norm
pseudospectra does not imply that they have the same behavior. In other words, there are
square matrices A and B such that, under the spectral norm,

||(zI − A)−1|| = ||(zI − B)−1|| ∀z ∈ C (R)

does not imply
||p(A)|| = ||p(B)|| for all polynomials p (P)

To show that (R) 6=⇒ (P), their example consisted of 5-by-5 block diagonal matrices using
Jordan blocks. To better understand the relationship between (R) and (P) in the spectral
norm, we first prove the simple case that if the pseudospectra of 2× 2 matrices match, then
they have the same minimal polynomial.

Given matrices A, B ∈Mn, let (M) be the condition mA = mB. We show that (R) =⇒ (M),
and then show one case in which (R) =⇒ (P).

Useful Lemmas

Lemma 1 Similar matrices have the same minimal polynomial.
Lemma 2 Let A, B ∈Mn and U, V ∈Mn be unitary, and A = U∗TaU, B = V∗TbV where the
diagonal entries of Ta and Tb are the eigenvalues of A and B, respectively. If condition (R)
holds for A and B, then condition (R) holds for Ta and Tb.
Lemma 3

If Tc =

(
λ c
λ

)
, then ||(zI − Tc)

−1|| = |z − λ|−1
[
|x|2

2 + 1 +

√
|x|4+4|x|2

2

]
where x = −c(z − λ)−1.

Lemma 4

Let Ta =

(
λ a
λ

)
and Tb =

(
λ b
λ

)
. If ||(zI − Ta)

−1|| = ||(zI − Tb)
−1|| for all z ∈ C, then |a| = |b|.

Pseudospectra of
(

0 1
0 0

)
Pseudospectra of

1 0 0
0 −1 0
0 0 i


(R) =⇒ (M).

Let A, B ∈M2 and assume that condition (R) holds. This implies that Λ (A) = Λ (B). By
Schur’s Triangularization Theorem, there exists unitary matrices U, V and upper triangular
matrices Ta and Tb so that

A = U∗TaU and B = V∗TbV

where the diagonal entries in Ta and Tb are the eigenvalues of A and B, respectively.
Case 1 Λ (A) = Λ (B) = {λ1, λ2}

In this case, we have Ta =

(
λ1 a
0 λ2

)
and Tb =

(
λ1 b
0 λ2

)
for some a, b ∈ C. Notice

that χTa(µ) = χTb(µ) = (µ− λ1)(µ− λ2). So, the minimal polynomial for Ta and Tb is
their characteristic polynomial. Therefore by Lemma 1, condition (M) holds.

Case 2 Λ (A) = Λ (B) = {λ}

In this case, we have Ta =

(
λ a
0 λ

)
and Tb =

(
λ b
0 λ

)
for some a, b ∈ C. By Lemma 2,

||(zI − Ta)
−1|| = ||(zI − Tb)

−1|| and so by Lemma 4, |a| = |b|. Now, if a = b = 0, then A and
B are similar to a scalar multiple of the identity matrix, and so mA(z) = z − λ = mB(z).
On the other hand, if a or b is nonzero, then both a and b are nonzero by Lemma 4.
Therefore by Lemma 1, mA(z) = (z − λ)2 = mB(z). In either case, mA = mB and so
condition (M) holds. �

Implications of (M)

We now see that condition (M) becomes very useful as we endeavor to show (R) =⇒ (P). If
we fix a polynomial p, and let mA be the minimal polynomial for a 2× 2 matrix A, then the
Division Algorithm tells us that there exists polynomials qA and rA so that

p = mA · qA + rA where deg rA < deg mA

and so
p(A) = mA(A) · qA(A) + rA(A) = rA(A)

which implies that ||p(A)|| = ||r(A)||. Since deg rA < deg mA = 2, then it suffices to show that
condition (P) holds for all monic linear polynomials.

(R) =⇒ (P) when Λ (A) = Λ (B) = {λ}.

Recall from before that A = U∗
(
λ a
0 λ

)
U and B = V∗

(
λ b
0 λ

)
V for unitaries U and V. Let

p(t) = t − µ be an arbitrary monic linear polynomial. We need to verify that ||p(A)|| = ||p(B)||.

Notice that Ta = λI + aN and Tb = λI + bN where N =

(
0 1
0 0

)
. Now, observe that when

z = µ− 2λ,∣∣∣∣(A + zI)−1
∣∣∣∣ = |µ− λ|−1 ·

∣∣∣∣∣∣(I + aN/(µ− λ))−1
∣∣∣∣∣∣ (and similarly for

∣∣∣∣(B + zI)−1
∣∣∣∣)

By condition (R),
∣∣∣∣∣∣(I + aN/(µ− λ))−1

∣∣∣∣∣∣ = ∣∣∣∣∣∣(I + bN/(µ− λ))−1
∣∣∣∣∣∣. Note that

(I + xN)−1 = I − xN for any x. Therefore,

||I − aN/(µ− λ)|| = ||I − bN/(µ− λ)||

||−[(µ− λ)I − aN]|| = ||−[(µ− λ)I − bN]||

||λI + aN − µI|| = ||λI + bN − µI||
||UAU∗ − U(µI)U∗|| = ||VBV∗ − V(µI)V∗||

||U(A − µI)U∗|| = ||V(B − µI)V∗||
||A − µI|| = ||B − µI||
||p(A)|| = ||p(B)|| �
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