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Abstract

First-kind Volterra equations arise in various applications, e.g., in models of pop-
ulation dynamics and in the inverse heat conduction problem. Roughly, these
equations have the form∫ t

0
k(t− s)u(s)ds = f (t) for t ∈ [0, 1]

where k and f are given and u is an unknown function.

Problem

When an object is pushed down a slide, the object follows a continuous path.
As the object descends, the object’s location (i.e. height) can be modeled as a
function of time.

t1t0 t2

h1 h2

h0

We are interested in the inverse problem, that is, given a function f that specifies
the total time of descent (for a given starting height), find an equation of the curve
u that yields this result. This inverse problem is known as Abel’s mechanical
problem; the relationship between f and u is (up to multiplicative constants) given
by the integral equation ∫ t

0

1√
t− s

u(s) ds = f (t) (1)

More generally, many other problems can be expressed in the form∫ t

0
k(t− s)u(s)ds = f (t) for t ∈ [0, 1]

for some function k called the Kernel. For simplicity Equation 1 can be written as

Au = f

In reality, only a discrete set of data is available. (e.g. desired time for an object to
reach a concrete height). However, one seeks to reconstruct a continuous func-
tions. This has led to the development of various methods such as Collocation
and Projection. Our problem consists to find a function u that solves

Au = f

if only a finite set of values of f are known, say on [0, 1]. For simplicity, we assume
f (t1), f (t2), . . . , f (tN ) are known

Collocation

t0 = 0 t1 t2 . . . tN = 1tN−1

∆T = 1
N

For i ≥ 2, we define the characteristic functions χi(t) = 1 if t ∈ (ti−1, ti], and
χi(t) = 0 otherwise. Also we define χ1(t) = 1 if t ∈ [0, t1] and χ1(t) = 0 oth-
erwise. In the method of Collocation, we seek a piecewise constant function
u =

∑N
k=1 ckχk so that

(Au)(ti) = f (ti) for i = 1, . . . , N (2)

Matrix Representation

After making change of variables it can be shown that

Au(tj) =

j∑
i=1

ci

∫ ∆T

0
k((j − i + 1)∆T − s)ds

Therefore, the collocation equations (Au)(ti) = f (ti) can be rewritten, in matrix form, as:

∫ ∆T
0 k(1∆T − s)ds 0 · · · 0∫ ∆T
0 k(2∆T − s)ds

∫ ∆T
0 k(1∆T − s)ds · · · 0

· · · ...
... · · · 0

. . . 0∫ ∆T
0 k(N∆T − s)ds

∫ ∆T
0 k((N − 1)∆T − s)ds

∫ ∆T
0 k(1∆T − s)ds




c1
c2
...
...
...
cN

 =


f (t1)
f (t2)

...

...

...
f (tN )


It can be seen that this equation has a unique solution.

Approximations

A mathlab code was created to show approximations for the function u(t) = cos(4πt) with
kernel k(t − s) = tν and for different values of N and ν. We also introduce noise to show
how small perturbations in our data can affect the approximation to the function u.

Figure 1: N = 50, ν = 1, err = 0.01 Figure 2: N = 50, ν = 2, err = 0.001 Figure 3: N = 50, ν = 2, err = 0.01

Figure 4: Data with error 1% Figure 5: Data with error 0.1% Figure 6: Data with error 1%

Projection

The method of Projection for A seeks to approximate a solution to the equation Ax = y by
a sequence (xn)∞n=1 of solutions to the equation

PNAPNx = PNy, N = 1, 2, . . . (3)

Since our goal is to solve Au = f , then Equation 3 in our context can be written as

PNAPNu = PNf for α ≥ 1 and N = 1, 2, . . . (4)

where u, f ∈ L2[0, 1] and A is the integral Volterra operator.

Matrix Representation

By cases and after a change of variables, it can be shown that

PN (Aχi) =
1

N

( N∑
j=i

ai,jχj −
N∑

j=i+1

bi,jχj

)
where

ai,j =

∫ tj

tj−1

(∫ t−ti−1

0
k(ξ)dξ

)
dt and bi,j =

∫ tj

tj−1

(∫ t−ti

0
k(ξ)dξ

)
dt

Collocation vs Projection

The following graphs show the roots of the calculus polynomial resultant from the
method of Collocation and Projection indicating the instability of both methods
as ν become larger.

Figure 7: N = 500, ν = 20 Figure 8: N = 500, ν = 10 Figure 9: N = 500, ν = 1

Conclusion

As we can see from the graphs, given the kernel k(t − s) = tν and values of
ν ≥ 2, the method of Collocation by piece-wise constant functions and Projec-
tion are unstable under small perturbation. We tested the methods for various
kernels as well, and the results were similar. The results make one think in a
different approach to solving the problem, that is, to represent it as a second
kind of Volterra equation. The first kind of Volterra equation is known to lead
to difficulties, as shown here. Whereas in the second kind of Volterra equation,
these difficulties are nonexistent.
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