Singular Values of the Volterra Operator

Sandra I. Ferris-Pearce, Advisor: Dr. Alberto A. Condori

Florida Gulf Coast University - Department of Mathematics

Abstract

This research focuses on singular values of the Volterra operator, V, a problem that has been studied extensively. It requires finding the eigenvalues of the self-adjoint, positive, compact operator of the form

$$(V^*Vf)(x) = \int_x^1 \int_0^t f(s)dsdt,$$

which results in solving a second order differential equation. We then explore more complicated versions of this problem by taking powers of the Volterra operator. This leads to more complex, higher-order differential equations to establish a generalized formula for the system of equations given by boundary conditions. Additionally, non-interger powers of the operator, V^{α} , are also examined, specifically $\alpha \in (0,1)$.

Introduction

The Volterra operator, V, maps $L^2[0,1]$ to $L^2[0,1]$ by

$$(Vf)(x) = \int_0^x f(t)dt.$$

In order to understand singular values we must first define a few key concepts for our operator.

Definition (Adjoint)

Consider the bounded operator A on a Hilbert space H. The adjoint operator $A^*: H \to H$ is defined by

$$\langle Ax, y \rangle = \langle x, A^*y \rangle \quad \forall x, y \in H.$$

The Volterra operator has an inner product defined by

$$\langle f, g \rangle = \int_0^1 f(x) \overline{g(x)} dx.$$

This leads to the adjoint of the Volterra operator to be

$$(V^*f)(x) = \int_x^1 f(t)dt.$$

Definition (Singular Values)

Given an operator A, s_i is a singular value of A if it belongs to the set

$$s_j(A) = {\sqrt{\lambda} | \lambda \text{ is an eigenvalue for } A^*A}.$$

Solving the Initial Case

To find the singular values, s, for the Volterra operator in its simplest form requires solving

$$(V^*Vf)(x) = s^2 f(x) \tag{1}$$

$$\int_{x}^{1} \int_{0}^{t} f(s)dsdt = s^{2}f(x). \tag{2}$$

Differentiating both sides twice results in the differential equation

$$f''(x) + \frac{1}{s^2}f(x) = 0. ag{3}$$

Letting $\omega = 1/s$ and solving this simple differential equation leads to

$$f(x) = c_1 e^{i\omega x} + c_2 e^{-i\omega x}$$
, and $f'(x) = i\omega c_1 e^{i\omega x} - i\omega c_2 e^{-i\omega x}$.

To solve for our unknown constants we refer back to the original equation 2. Our first integral is evaluated from x to 1, and hence if x = 1, the integral is zero. This implies that either s^2 is zero or f(1) is zero. However, in equation 3 we divided by s^2 , implying it cannot equal zero. Thus, f(1) = 0. By a similar argument we can see that f'(0) = 0. These boundary conditions show that $c_1 = c_2$. Additionally, we find that

$$f(x) = 2c_1 \cos(\omega x).$$

More importantly, as f(1) = 0, we find that ω must be of the form $((2k+1)\pi)/2$. Therefore,

$$s = \frac{2}{(2k+1)\pi}, \ k \in \mathbb{Z}.$$

Integer Powers of the Volterra Operator

A more complicated problem arises for finding singular values of the powers of the Volterra operator. We define $V^n f$ by

$$V^{n+1}f = V(V^n f), \quad n \in \mathbb{N}.$$

Using induction, it can be shown that

$$(V^n f)(x) = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(t) dt, \text{ and}$$

$$((V^*)^n f)(x) = \frac{1}{(n-1)!} \int_x^1 (t-x)^{n-1} f(t) dt.$$

In order to find the singular values for the power of the operator, we now need to solve

$$((V^*)^n V^n f)(x) = s^2 f(x)$$
, or equivalently

$$\int_{x}^{1} \frac{(t-x)^{n-1}}{(n-1)!} \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} f(s) ds dt = s^{2} f(x).$$

However, this also can be evaluated as a differential equation, this time by taking the derivative 2n times, resulting in

$$(-1)^n f = s^2 f^{(2n)}$$

Additionally, we find that the boundary conditions are

$$f(1) = f'(1) = \dots f^{(n-1)}(1) = f^{(n)}(0) = \dots = f^{(2n-1)}(0) = 0.$$

If we let $\omega = 1/s^{1/n}$, then we need to solve the differential equa-

$$f^{(2n)} - (i\omega)^{2n} f = 0.$$

Consider the characteristic equation for the previous differential equation.

$$z^{(2n)} - (i\omega)^{(2n)} = 0$$
$$z^{(2n)} = (i\omega)^{(2n)}.$$

We can rewrite this as

$$r^{(2n)}e^{2i\theta n} = z^{(2n)} = (i\omega)^{(2n)}.$$

Then $r^{(2n)} = \omega^{(2n)}$ and $e^{2i\theta n} = i^{(2n)}$. This implies that $\theta = \frac{\pi}{2} + \frac{\pi k}{2}$ for k = 1, 2, ..., 2n. Thus,

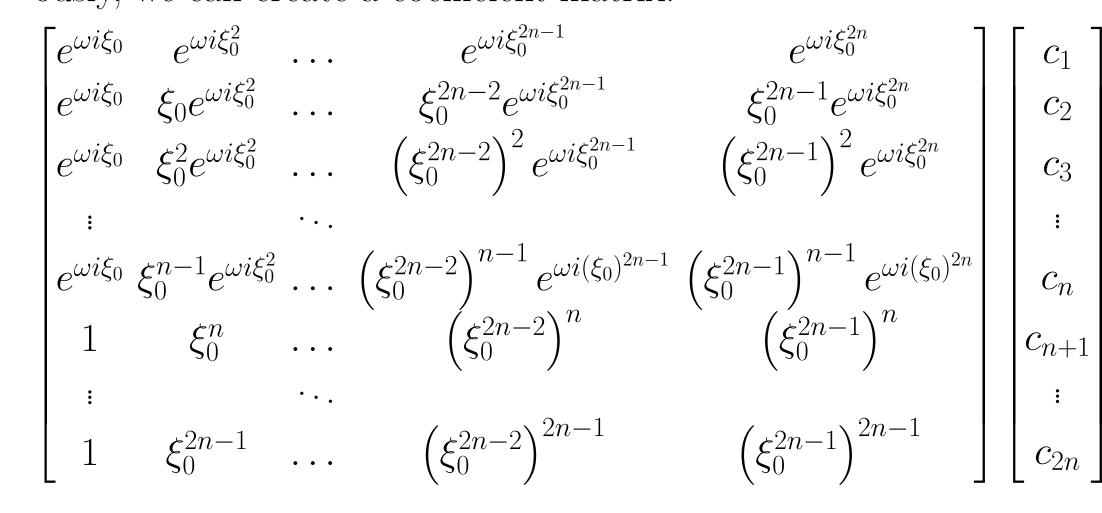
$$z = \omega e^{i(\pi/2 + (\pi k)/n)} = \omega e^{i\pi/2} e^{(\pi/n)^k} = i\omega e^{(i\pi/n)^k}.$$

To find our eigenfunction, we first let $\xi_0 = e^{i\pi/n}$. Then,

$$f(x) = c_1 e^{i\omega\xi_0} + c_2 e^{i\omega\xi_0^2} + \dots + c_{2n} e^{i\omega\xi_0^{2n}}$$

Coefficient Matrix

Using the boundary conditions and eigenfunction found previously, we can create a coefficient matrix.



Case when n=2

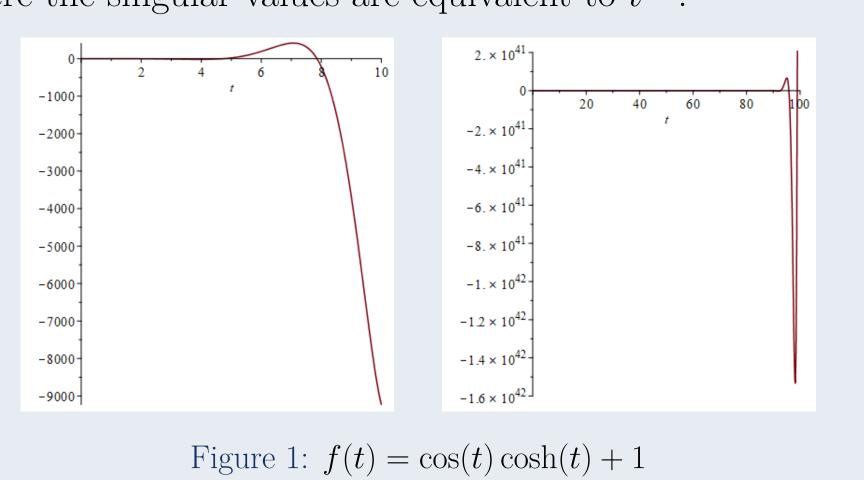
For the specific case when n=2, the boundary conditions lead to the following 4×4 matrix for the coefficients of the

$$\begin{bmatrix} e^{\omega} & e^{-\omega} & e^{i\omega} & e^{-i\omega} \\ e^{\omega} & -e^{-\omega} & ie^{i\omega} & -ie^{-i\omega} \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -i & i \end{bmatrix} \cdot \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} f(1) \\ f'(1) \\ f''(0) \\ f'''(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

If we find the determinant of this matrix and set it equal to zero, we can identify our singular values. This results in

$$\cos(t)\cosh(t) + 1 = 0,$$

where the singular values are equivalent to t^{-2} .



Non-Integer Powers of the Volterra Operator

We now consider powers of the operator that are not integers, namely the power $\alpha \in (0,1)$. Here, we define the operator to the power of α by

$$(V^{\alpha}f)(x) = \int_0^x \frac{(x-t)^{\alpha-1}}{\Gamma(\alpha)} f(t)dt.$$

This leads to finding the eigenvalues of

$$((V^*)^{\alpha} V^{\alpha} f)(x) = \int_x^1 \frac{(t-x)^{\alpha-1}}{\Gamma(\alpha)} \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) ds dt.$$

We can immediately observe that taking derivatives does not apply in this case. Instead, we focused on the range of V^{α} , $((V^*)^{\alpha})$, and finally $((V^*)^{\alpha}V^{\alpha})$. To find these, we take advantage of the semi-group property

$$V^{\alpha}V^{\beta} = V^{\alpha+\beta}.$$

To start, we consider any g such that $V^{\alpha}f = g$. Then,

$$g = \int_0^x \frac{(x-t)^{\alpha-1}}{\Gamma(\alpha)} f(t)dt.$$

Thus, if we are evaluating at $(V^{\alpha}f)(0)$, the limits of integration go from 0 to 0, and therefore g(0) = 0. Additionally, given D as the differential operator,

$$f = D(V^{1-\alpha}g).$$

As $f \in L^2[0,1]$, then $D(V^{1-\alpha}g) \in L^2[0,1]$. Furthermore, for us to be able to differentiate, we need $V^{1-\alpha}g \in AC[0,1]$. Putting this altogether, we have

$$Ran(V^{\alpha}) = \{g : g(0) = 0, (V^{1-\alpha}g)' \in L^{2}[0,1], V^{1-\alpha}g \in AC[0,1]\}.$$

By a completely analogous approach, we find that

$$RanV^{\alpha*} = \{h : h(1) = 0, (V^{(1-\alpha)*}h)' \in L^2[0,1], V^{(1-\alpha)*}h \in AC[0,1]\}.$$

For $(V^{\alpha})^*V^{\alpha}$, we note that this is a map that takes $Ran(V^{\alpha}) \to V^{\alpha}$ $Ran(V^{\alpha*})$. Here, we are applying $V^{\alpha*}$ to $Ran(V^{\alpha})$. If we let $V^{\alpha*}V^{\alpha}f=k$, then

$$Ran(V^{\alpha*}V^{\alpha}) = \{k : k(1) = 0, (V^{(1-\alpha)*}k)' \in L^{2}[0, 1], V^{(1-\alpha)*}k \in AC[0, 1], -D(V^{(1-\alpha)*}k) = q\}.$$

Conclusion

While much progress has been made towards finding the singular values of the Volterra operator, the complexity of the problem ensures future work will be needed.

References

[1] L. Debnath and P. Mikusinski. Introduction to Hilbert Spaces with Applications. Elsevier Science, 2005.

[2] P.R. Halmos.

A Hilbert Space Problem Book.

Graduate Texts in Mathematics. Springer, 1982.

[3] E. Hille and R.S. Phillips.

Functional Analysis and Semi Groups.

Colloquium Publications - American Mathematical Society. American Mathematical Soc., 1957.

[4] Yuri Lyubich and Tsedenbayar Dashdondog.

The norms and singular numbers of polynomials of the classical volterra operator in 12(0,1). Studia Mathematica - STUD MATH, 199:171–184, 01

[5] B. Thorpe.

2010.

The Norm of Powers of the Indefinite Integral Operator on (0, 1).

Bulletin of the London Mathematical Society, 30(5):543-548, 09 1998.

Acknowledgements

I would like to thank Dr. Condori for his continued support, guidance, and encouragement throughout this research project.

