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Abstract

This research focuses on singular values of the Volterra op-
erator, V , a problem that has been studied extensively. It
requires finding the eigenvalues of the self-adjoint, positive,
compact operator of the form

(V ∗V f ) (x) =
∫ 1

x

∫ t

0
f (s)dsdt,

which results in solving a second order differential equation.
We then explore more complicated versions of this problem
by taking powers of the Volterra operator. This leads to
more complex, higher-order differential equations to establish
a generalized formula for the system of equations given by
boundary conditions. Additionally, non-interger powers of
the operator, V α, are also examined, specifically α ∈ (0, 1).

Introduction

The Volterra operator, V , maps L2[0, 1] to L2[0, 1] by

(V f ) (x) =
∫ x

0
f (t)dt.

In order to understand singular values we must first define a few
key concepts for our operator.

Definition (Adjoint)

Consider the bounded operator A on a Hilbert space H . The
adjoint operator A∗ : H → H is defined by

〈Ax, y〉 = 〈x,A∗y〉 ∀x, y ∈ H.

The Volterra operator has an inner product defined by

〈f, g〉 =
∫ 1

0
f (x)g(x)dx.

This leads to the adjoint of the Volterra operator to be

(V ∗f )(x) =
∫ 1

x
f (t)dt.

Definition (Singular Values)

Given an operator A, sj is a singular value of A if it belongs to
the set

sj(A) = {
√
λ| λ is an eigenvalue for A∗A}.

Solving the Initial Case

To find the singular values, s, for the Volterra operator in its
simplest form requires solving

(V ∗V f ) (x) = s2f (x) (1)∫ 1

x

∫ t

0
f (s)dsdt = s2f (x). (2)

Differentiating both sides twice results in the differential equation

f ′′(x) + 1
s2f (x) = 0. (3)

Letting ω = 1/s and solving this simple differential equation
leads to

f (x) = c1e
iωx + c2e

−iωx, and
f ′(x) = iωc1e

iωx − iωc2e
−iωx.

To solve for our unknown constants we refer back to the original
equation 2. Our first integral is evaluated from x to 1, and hence
if x = 1, the integral is zero. This implies that either s2 is zero or
f (1) is zero. However, in equation 3 we divided by s2, implying
it cannot equal zero. Thus, f (1) = 0. By a similar argument we
can see that f ′(0) = 0. These boundary conditions show that
c1 = c2. Additionally, we find that

f (x) = 2c1 cos (ωx) .
More importantly, as f (1) = 0, we find that ω must be of the
form ((2k + 1)π)/2. Therefore,

s = 2
(2k + 1)π

, k ∈ Z.

Integer Powers of the Volterra Operator

A more complicated problem arises for finding singular values of
the powers of the Volterra operator. We define V nf by

V n+1f = V (V nf ), n ∈ N.
Using induction, it can be shown that

(V nf )(x) = 1
(n− 1)!

∫ x

0
(x− t)n−1f (t)dt, and

((V ∗)nf )(x) = 1
(n− 1)!

∫ 1

x
(t− x)n−1f (t)dt.

In order to find the singular values for the power of the operator,
we now need to solve

((V ∗)nV nf ) (x) = s2f (x), or equivalently∫ 1

x

(t− x)n−1

(n− 1)!

∫ t

0

(t− s)n−1

(n− 1)!
f (s)dsdt = s2f (x).

However, this also can be evaluated as a differential equation,
this time by taking the derivative 2n times, resulting in

(−1)nf = s2f (2n)

Additionally, we find that the boundary conditions are
f (1) = f ′(1) = ...f (n−1)(1) = f (n)(0) = ... = f (2n−1)(0) = 0.

If we let ω = 1/s1/n, then we need to solve the differential equa-
tion

f (2n) − (iω)2nf = 0.
Consider the characteristic equation for the previous differential
equation.

z(2n) − (iω)(2n) = 0
z(2n) = (iω)(2n).

We can rewrite this as
r(2n)e2iθn = z(2n) = (iω)(2n).

Then r(2n) = ω(2n) and e2iθn = i(2n). This implies that θ = π
2 + πk

2
for k = 1, 2, ..., 2n. Thus,

z = ωei(π/2+(πk)/n) = ωeiπ/2e(π/n)k = iωe(iπ/n)k.

To find our eigenfunction, we first let ξ0 = eiπ/n. Then,
f (x) = c1e

iωξ0 + c2e
iωξ2

0 + ... + c2ne
iωξ2n

0

Coefficient Matrix

Using the boundary conditions and eigenfunction found previ-
ously, we can create a coefficient matrix.

eωiξ0 eωiξ
2
0 . . . eωiξ

2n−1
0 eωiξ

2n
0

eωiξ0 ξ0e
ωiξ2

0 . . . ξ2n−2
0 eωiξ

2n−1
0 ξ2n−1

0 eωiξ
2n
0

eωiξ0 ξ2
0e
ωiξ2

0 . . .
(
ξ2n−2

0

)2
eωiξ

2n−1
0

(
ξ2n−1

0

)2
eωiξ

2n
0

... . . .
eωiξ0 ξn−1

0 eωiξ
2
0 . . .

(
ξ2n−2

0

)n−1
eωi(ξ0)2n−1

(
ξ2n−1

0

)n−1
eωi(ξ0)2n

1 ξn0 . . .
(
ξ2n−2

0

)n (
ξ2n−1

0

)n
... . . .
1 ξ2n−1

0 . . .
(
ξ2n−2

0

)2n−1 (
ξ2n−1

0

)2n−1





c1
c2

c3
...
cn

cn+1
...
c2n



Case when n = 2

For the specific case when n = 2, the boundary conditions
lead to the following 4 × 4 matrix for the coefficients of the
terms.

eω e−ω eiω e−iω

eω −e−ω ieiω −ie−iω
1 1 −1 −1
1 −1 −i i

 ·

c1
c2
c3
c4

 =


f (1)
f ′(1)
f ′′(0)
f ′′′(0)

 =


0
0
0
0


If we find the determinant of this matrix and set it equal to
zero, we can identify our singular values. This results in

cos(t) cosh(t) + 1 = 0,
where the singular values are equivalent to t−2.

Figure 1: f (t) = cos(t) cosh(t) + 1

Non-Integer Powers of the Volterra
Operator

We now consider powers of the operator that are not integers,
namely the power α ∈ (0, 1). Here, we define the operator to
the power of α by

(V αf ) (x) =
∫ x

0

(x− t)α−1

Γ(α)
f (t)dt.

This leads to finding the eigenvalues of

((V ∗)α V αf ) (x) =
∫ 1

x

(t− x)α−1

Γ(α)

∫ t

0

(t− s)α−1

Γ(α)
f (s)dsdt.

We can immediately observe that taking derivatives does not
apply in this case. Instead, we focused on the range of V α,
((V ∗)α, and finally ((V ∗)α V α. To find these, we take advantage
of the semi-group property

V αV β = V α+β.

To start, we consider any g such that V αf = g. Then,

g =
∫ x

0

(x− t)α−1

Γ(α)
f (t)dt.

Thus, if we are evaluating at (V αf )(0), the limits of integration
go from 0 to 0, and therefore g(0) = 0. Additionally, given D as
the differential operator,

f = D(V 1−αg).
As f ∈ L2[0, 1], then D(V 1−αg) ∈ L2[0, 1]. Furthermore, for us
to be able to differentiate, we need V 1−αg ∈ AC[0, 1]. Putting
this altogether, we have
Ran(V α) = {g : g(0) = 0, (V 1−αg)′ ∈ L2[0, 1], V 1−αg ∈ AC[0, 1]}.
By a completely analogous approach, we find that
RanV α∗ = {h : h(1) = 0, (V (1−α)∗h)′ ∈ L2[0, 1], V (1−α)∗h ∈ AC[0, 1]}.
For (V α)∗V α, we note that this is a map that takes Ran(V α)→
Ran(V α∗). Here, we are applying V α∗ to Ran(V α). If we let
V α∗V αf = k, then

Ran(V α∗V α) = {k : k(1) = 0, (V (1−α)∗k)′ ∈ L2[0, 1],
V (1−α)∗k ∈ AC[0, 1],−D(V (1−α)∗k) = g}.

Conclusion

While much progress has been made towards finding the singular
values of the Volterra operator, the complexity of the problem
ensures future work will be needed.
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