
Saddle Points of Analytic Matrix-Valued Functions
Caden Ryals-Luneburg

Florida Gulf Coast University - Department of Mathematics

Abstract

• Optimization is one of the things that calculus gets applied
to the most. We want to know where a function is at its
maximum or minimum value. When at a maximum or
minimum of a function, the derivative at that point is zero.
Sometimes, when the derivative is zero, it is neither a max
nor a min. When the derivative is zero and the point is
neither a max nor a min, it is referred to as a saddle point.
Potential saddle points may be narrowed down in
real-valued functions by use of the Hessian matrix. Less is
known about n× n complex-analytic matrix-valued
functions. Except for the 1× 1 case, where a point is a
saddle if it is also a saddle of the modulus of the function,
and where being a critical point guarantees being a saddle
point when not on the boundary. In order to determine the
conditions for a saddle point existing with matrix-valued
functions we utilize Operator and Frobenius norms. [4]

Fermat’s Interior Extremum Theorem

In order to understand critical points at a matrix-valued level
let us first understand them at the real-valued level. Pierre
De Fermat granted us this theorem back in the 1600s!

Fermat’s Theorem of Stationary Points: Suppose x0
is an interior point of an open interval I and f is a real-valued
function defined on I which is differentiable at x0. If f has a
“local extremum” at x0, then f ′(x0) = 0.

In contrast, a saddle is a point, x0, where f ′(x0) = 0, but
f (x0) is not a local max or min.

[3]

Complex Functions Have No Order

We wish to analyze complex-valued functions because they are
essentially the 1 × 1 case of matrix-valued functions. In the
beginning of the proof to Fermat’s Interior Extremum Theorem,
you first assume that a point is either a maxima or a minima.
Call that point a and you get

f (a) ≥ f (a + k)
if a is a maxima and if k is some real number. Such inequalities
cannot hold for complex variables. The reason is due to axioms
related to natural ordering: ∀ a, b, c

1 a ≤ b implies a + c ≤ b + c

2 0 ≤ a and 0 ≤ b implies 0 ≤ ab

Assume that complex numbers do obey these rules, then either
i ≥ 0 or i ≤ 0.
If i ≥ 0, then by the second rule we can say that

i ∗ i ≥ 0
but we know that i ∗ i = −1, and to say −1 ≥ 0 is a known
falsehood. We could also use rule one, and since we know 1 ≥ 0
is true, we can say

i ∗ i + 1 ≥ 0 + 1
therefore we arrive at 0 ≥ 1 which we know is false. If i ≤ 0, we
can say −i ≥ 0 so

(−i)(−i) ≥ 0
We get −1 ≥ 0 again which we know isn’t true. So,
complex numbers can not be ordered! We circumvent this
problem utilizing the modulus of the complex function.

Saddle Points with respect to the Modulus

This is a plot of |z2 + ez|, the modulus of z2 + ez, which has
a saddle point at z = 0. For a complex number a + bi, the
modulus is

√
a2 + b2. Since a and b are both real, the modulus

is also real, and non-negative. We say f (x) has a saddle if |f (x)|
has a saddle.

The Bak-Newman-Ding Theorem

Since the problem was lack of ordering for complex functions, and
the modulus fixes that problem, the natural question to ask is
“do complex functions have similar conditions for saddle points
as their real counterparts?”. The answer to that question is a
resounding NO. This is well known and flows from the maximum
and minimum “modulus theorems”.
• By the maximum modulus theorem, f (z) has no local

extrema except for zeros, if it has any (the zeros are where
|f (z)| attains its absolute minimum)
• From the max & min modulus theorems, if f (z) is analytic

in an open set containing a compact set K, and is not
constant, then the max & min modulus |f (z)| over K is
found on the boundary of K.
• Bak-Newman-Ding Theorem: Let f be a

nonconstant complex analytic function on an open set Ω,
z0 ∈ Ω is a saddle point of an analytic function f if and
only if f ′(z0) = 0 and f (z0) 6= 0.

[1]

Square Matrix-Valued Functions

In order to try to generalize the Bak-Newman-Ding theorem to
Square MVF’s (Matrix-Valued Functions), we must first define
the MVF as simply a matrix with complex-valued functions as
the entries.
Example: If

F =
[

z 0
0 z2

]
, then F(-1)=

[
−1 0
0 1

]
, F(1+i)=

[
1 + i 0

0 2i

]

The 2× 2 Case

The simplest case after understanding the 1× 1 case is the 2× 2
case.
• Again, we have to deal with a lack of natural ordering, and

with a 2× 2 matrix we are mapping two variables (<(z)
and =(z)) to eight other variables (4 ∈<(z), and 4 ∈=(z)).
• We use “norms” to tackle this problem as we have used the

modulus before.
• There are multiple kinds of norms, for this project only the

Frobenius/Euclidean norm and Operator norm are used.
• Frobenius/Euclidean norm:
||A||F =

√
|a11|2 + |a12|2 + |a21|2 + |a22|2

• Operator norm:

||A|| = max
{√
|a11x1 + a12x2|2 + |a21x1 + a22x2|2 : x2

1 + x2
2 = 1

}
In the following example we see that whether the operator (right)
or frobenius (left) norm is used, the property of having a saddle
point is preserved. Hence, we may define the saddle of an MVF
as the saddle of either its frobenius or operator norm. [2]

F(z) =
[

z2 + 1 1
0 1

]

Current Progress

The norm of F(z) =
[

z2 + 1 0
0 z5 + 2

]
,

generated in Maple above, appears to have 4 saddles, if you could
see it from all sides. This is one less than the degree of the highest
degree polynomial out of all of the elements in the matrix, so I
would like to generalize and say that the number of saddles n is

n = (max deg aij)− 1
. The problem with that is a casual observer may not simply
“eyeball” saddle points. Analytical rigor requires more stringent
testing techniques to determine if a point is a saddle or not.
Modern techniques include the use of the Hessian matrix. The
Hessian is a square matrix of second-order partial derivatives.
Applying this technique may yield a greater number of potential
saddle points than my formula suggests.

Open Questions

• Is there an analog to the Bak-Newman-Ding theorem for
MVF’s?
• If a non-constant function has 2 local min’s and no local

max, then must it have a saddle in between the min’s?
• How does one analytically prove that a point is a saddle for

an MVF?
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