1. Autocatalytic Synthesis of Bifluoride Ionic Liquids via SuFEx Click Chemistry.
    T. Hmissa, X. Zhang, N. Dhumal, G. McManus, X. Zhou, H. Nulwala, A. Mirjafari
    Angew. Chem. (Accetped) (DOI:https://doi.org/10.1002/anie.201808304).

  2. Deconvolution of conformational equilibria in methimazolium-based ionic liquid ion pair: Infrared spectroscopic and computational study.
    N. R.Dhumal, A. Mirjafari, H. J. Kim
    J. Mole. Liquids 2018, 266, 194-202 (DOI:https://doi.org/10.1016/j.molliq.2018.06.050).

  3. Synthesis, conductivity, and vibrational spectroscopy of tetraphenylphosphonium bis(trifluoromethanesulfonyl)imide.
    B. Haddadabd, A. Paolone, D. Villemin, M. Taqiyeddine, E. Belarbi, S.Bresson, M. Rahmouni, N. R. Dhumal, H. J. Kim, J. Kiefer
    J. Mole. Struct. 2017, 1146, 203-212 (DOI:https://doi.org/10.1016/j.molstruc.2017.05.138).

  4. Influence of methyl and propyl groups on the vibrational spectra of two imidazolium ionic liquids and their non-ionic precursors.
    B. Haddadabd, D. Mokhtar, M. Goussem, E. Belarbi, D. Villemin, S. Bresson, M. Rahmouni, N. R. Dhumal, H. J. Kim, J. Kiefer
    J. Mole. Struct. 2017, 1134, 582-590 (DOI:https://doi.org/10.1016/j.molstruc.2017.01.008).

  5. CO2 capture in ionic liquid 1-alkyl-3-methylimidazolium acetate: a concerted mechanism without carbene.
    F. Yan, N. R. Dhumal, H. J. Kim
    Phys. Chem. Chem. Phys. 2017, 19, 1361-1368 (DOI:10.1039/C6CP06556B).

  6. Dielectric Relaxation of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate: Microwave and Far-IR Properties.
    N. R. Dhumal, J. Kiefer, D. Turton, K. Wynne, H. J. Kim
    J. Phys. Chem. B, 2017, 121 (18), 4845-4852 (DOI: 10.1021/acs.jpcb.7b00160) .

  7. Removal of Confined Ionic Liquid from a Metal Organic Framework by Extraction with Molecular Solvents.
    M. P. Singh, N. R. Dhumal, H. J. Kim, J. Kiefer, J. A. Anderson
    J. Phys. Chem. C, 2017, 121 (19),10577-10586 (DOI: 10.1021/acs.jpcc.7b02289).

  8. Influence of water on the chemistry and structure of the metal organic framework.
    M. P. Singh, N. R. Dhumal, H. J. Kim, J. Kiefer, J. A. Anderson
    J. Phys. Chem. C 2016 , 120(31), 17323-17333.

  9. A Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.
    S. Park, D. DeYoung, N. R. Dhumal, Y. Shim, H. J. Kim, Y. Jung
    J. Phys. Chem. letters 2016, 7(7), 1180-1186.

  10. Theoretical study of interactions of Li+ (CF3SO2)2N - ion pair with CR3(OCR2CR2)nOCR3 (R=H or F).
    H. Abroshan, N. R. Dhumal, Y. Shim, H. J. Kim
    Phys. Chem. Chem. Phys. 2016, 18, 6754-6762.

  11. Molecular Interactions of a Cu-Based Metal?Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study.
    N. R. Dhuaml, M. P. Singh, J. A. Anderson, J. Kiefer, H. J. Kim
    J. Phys. Chem. C 2016, 120(6), 3295-3304.

  12. Understanding the mechanism of CO2 capture by 1, 3 di-substituted imidanolium acetate based ionic liquids.
    J. Mao, J. A. Steckel, F. Yan, N. Dhumal, H. Kim. K. Damodaran
    Phys. Chem. Chem. Phys. 2016, 18(3), 1911-1917.

  13. Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: experiments and Car-Parrnello simulations.
    V. M. Wallace, N. R. Dhumal, F. M. Zehentbauer, H. J. Kim, J. Kiefer
    J. Phys. Chem. B 2015, 119, 14780?14789.

  14. Computational Study of Structure, Dynamics and Spectroscopy of Ionic Liquids.
    H. J. Kim, N. R. Dhumal, Y. Shim, H. J. Kim
    ECS Transactions 2014, 64(4), 119-127.

  15. Graphene Oxide Supercapacitors: A Computer Simulation Study.
    D. DeYoung, S. Park, N. R. Dhumal, Y. Shim, Y. Jung, H. J. Kim
    J. Phys. Chem. C 2014, 118, 18472-18480.

  16. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
    N. R. Dhumal, K. Noack, J. Kiefer, H. J. Kim
    J. Phys. Chem. A 2014, 118 (13), 2547-2557.
    (Journal's Top 20 most read articles April 2014)

  17. Effect of Self-Assembled Monolayers on Charge Injection and Transport in Poly(3-hexylthiophene)-Based Field-Effect Transistors at Different Channel Length Scales.
    K. A. Singh, T. L. Nelson, J. A. Belot, T. M. Young, N. R. Dhumal, T. Kowalewski, R D. McCullough, P. Nachimuthu, S. Thevuthasan, L. M. Porter
    ACS Appl. Mater Interface 2011, 3, 2973.

  18. Electronic structure, molecular electrostatic potential and hydrogen bonding in DMSO-X complexes (X = ethanol, methanol and water).
    N. R. Dhumal
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 79, 654.

  19. Electronic Structure and Normal Vibrations of the 1-Ethyl-3-methylimidazolium Ethyl Sulfate Ion Pair.
    N. R. Dhumal, H. J. Kim, J. Kiefer
    J. Phys. Chem. A. 2011, 115, 3551.

  20. Molecular Interactions in 1-Ethyl-3-methylimidazolium Acetate Ion Pair: A Density Functional Study.
    N. R. Dhumal, H. J. Kim, J. Kiefer
    J. Phys. Chem. A. 2009, 113, 10397.

  21. Molecular interactions and normal vibrations of Fe- bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium-Fe-bis(trifluoromethanesulfonyl)imide ionic liquids: A density functional study.
    N. R. Dhumal, K. Damodaran
    J. Mole. Struct. THEOCHEM 2009, 906, 78.

  22. Ab-initio analysis of the local coordination environment of oligomers derived from polymerizing 5-Norbornene-2-carboxylic acid.
    K. Damodaran, N. R. Dhumal, R. T. Mathers
    J. Mole. Struct. THEOCHEM 2008, 867, 5.

  23. Molecular interactions and vibrations in CH3(OCH2CH2)2OCH3?M+?X- (M=Li, Na, K and X=PF6, AsF6, SbF6): An ab initio study.
    N. R. Dhumal and S. P. Gejji
    J. Mole. Struct. THEOCHEM 2008, 859, 86.

  24. Molecular interactions in 1,3-dimethylimidazolium-bis(trifluromethanesulfonyl)imide ionic liquid.
    N. R. Dhumal
    Chem. Phys. 2007, 342, 245.

  25. Theoretical studies on NMR chemical shifts in azacubanes.
    R. V. Pinjari, N. R. Dhumal and S. P. Gejji
    Spectrochimica Acta Part A 2007, 67, 1144.

  26. Electronic structure and normal vibrations of CH3(OCH2CH2)nOCH3-M+- CF3SO3- (n= 2-4, M= Li, Na and K).
    T. V. Kaulgud, N. R. Dhumal and S. P. Gejji
    J. Phys. Chem. A. 2006, 110, 9231.

  27. Theoretical studies in local coordination and vibrational spectra of M+CH3O(CH2CH2O)nCH3 (n=2-7) complexes (M=Na, K, Mg and Ca).
    N. R. Dhumal and S. P. Gejji
    Chem. Phys. 2006, 323, 595.

  28. Theoretical studies on blue versus red shifts in diglyme-M+-X- (M= Li, Na, K and X=CF3SO3, PF6, (CF3SO2)2N)).
    N. R. Dhumal and S. P. Gejji
    J. Phys. Chem. A. 2006, 110, 219.

  29. Theoretical Investigations of electronic structure and tautomerism in ground and excited states of 1-[N-(4-Fluorophenyl)]naphthaldimine.
    N. R. Dhumal and S. P. Gejji
    J. Mol. Struct. (THEOCHEM) 2006, 758, 259.

  30. Theoretical studies on blue versus red shifts in diglyme-M+-X- (M= Li, Na, K and X= BF4, ClO4, SCN).
    N. R. Dhumal and S. P. Gejji
    J. Mol. Struct. (THEOCHEM) 2006, 758, 233.

  31. Theoretical investigations on structure, electrostatics potentials and vibrational frequencies of Li+- CH3-O-(CH2-CH2-O)n-CH3 (n=3-7) Conformers.
    N. R. Dhumal and S. P. Gejji
    Theor. Chem. Acc. 2006, 115, 308.

  32. Hydrogen bonding motif in 2-hydroxy-1,4-naphthoquinone.
    N. R. Dhumal, A. V. Todkary, S. Y. Rane, S. P. Gejji
    Theor. Chem. Acc. 2005, 113, 161.

  33. Theoretical investigations of the C-H---N interactions and molecular electrostatic potentials: aza derivatives of cubane
    N. R. Dhumal, S. P. Gejji
    Chem. Phys. Lett. 2004, 397, 185.

  34. Red versus blue shifts in trimethylammoniumhexafluorosilicate.
    N. R. Dhumal, S. P. Gejji
    Chem. Phys. Lett. 2004, 393, 355.

  35. Molecular electrostatic potentials and electron densities in nitrocubanes C8H8-a (NO2)a (a =1 - 8) : ab initio and density functional study.
    S. P. Gejji, U. N. Patil, N. R. Dhumal
    J. Mol. Struct. (THEOCHEM) 2004, 681, 115.

  36. Theoretical studies on the molecular electron densities and electrostatic potentials in azacubanes.
    U. N. Patil, N. R. Dhumal, S. P. Gejji
    Theor. Chem. Acc. 2004, 112, 27.

  37. Molecular Electrostatic Potentials and Electron Densities in Nitroazacubanes.
    N. R. Dhumal, U. N. Patil, S. P Gejji
    J. Chem. Phys. 2004, 120, 749.

  38. Hartree-Fock and density functional studies on the structure and vibrational frequencies of quinoxalines- the building blocks for dendrimers.
    A. S. Kumbhar, N. R. Dhumal, S. P. Gejji
    J. Mol. Struct. (THEOCHEM) 2002, 589, 301.

  39. Ab initio structure and vibrational frequencies of lithium aromatic sulfonyl imide salt.
    S. P. Gejji, P. R. Agrawal, N. R. Dhumal
    Theor. Chem. Acc. 2002, 107, 351.

  40. Hydrogen bonding effects on charge distribution and vibrational spectra of N?(2?carboxyphenyl)salicylidenimine tautomers,
    N. R. Dhumal, S. P. Gejji
    J. Mol. Struct. (THEOCHEM) 2003, 640, 117.

  41. Theoretical investigation on the structure and vibrational frequencies of Schiff?s base ligand 1-(salicylaldimino)-3-biuret.
    D. R. Thube, N. R. Dhumal, S. Y. Rane, S. P. Gejji
    J. Mol. Struct. (THEOCHEM) 2002, 585, 159.

  42. Hartree Fock and density functional studies on the structure and vibrational frequencies of quinone derived Schiff?s Base ligand.
    D. R. Thube, N. R. Dhumal, S. Y. Rane, S. P. Gejji
    J. Mol. Struct. (THEOCHEM) 2002, 579, 139.